剑指offer-36:数组中的逆序对
Posted xiaoyebula
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了剑指offer-36:数组中的逆序对相关的知识,希望对你有一定的参考价值。
参考:1、 https://www.geeksforgeeks.org/merge-sort/
2、《剑指Offer:名企面试官精讲典型编程题》
题目描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007
输入描述:
题目保证输入的数组中没有的相同的数字
数据范围:
- 对于%50的数据,size<=10^4
- 对于%75的数据,size<=10^5
- 对于%100的数据,size<=2*10^5
示例1 输入:1,2,3,4,5,6,7,0 输出:7
解题思路1 (暴力法,时间复杂度: O(n^2))
这个方法最简单直接,顺序扫描整个数组,每扫到一个数,逐个比较其后面的所有数,如果构成逆序对,则计数+1。代码没啥难度,略了。
解题思路2 (分治法,时间复杂度: O(nlogn),空间复杂度:O(n))
1 public int InversePairs(int[] array) { 2 if (array.length < 2) { 3 return 0; 4 } 5 return divideAndConquer(array, 0, array.length); 6 } 7 8 public int divideAndConquer(int[] array, int l, int r) { 9 if (l >= r - 1) return 0; 10 11 int mid = (l + r) / 2; 12 int count = 0; 13 int countL = divideAndConquer(array, l, mid); 14 int countR = divideAndConquer(array, mid, r); 15 int[] left = Arrays.copyOfRange(array, l, mid); 16 int[] right = Arrays.copyOfRange(array, mid, r); 17 int i = left.length - 1; 18 int j = right.length - 1; 19 for (int k = r - 1; k >= l; k--) { 20 // two cases: left is empty or right is empty 21 if (i < 0) { 22 array[k] = right[j]; 23 j--; 24 continue; 25 } else if (j < 0) { 26 array[k] = left[i]; 27 i--; 28 continue; 29 } 30 if (left[i] > right[j]) { 31 count += j + 1; 32 if (count > 1000000007) { 33 count %= 1000000007; 34 } 35 array[k] = left[i]; 36 i--; 37 } else { 38 array[k] = right[j]; 39 j--; 40 } 41 } 42 return (count + countL + countR) % 1000000007; 43 }
这一题的解法是在归并排序(Merge Sort) 的基础上修改得到的。Merge Sort使用的是分治法的思想。分治法 (divide and conquer) 是将一个复杂的问题,分成两个或多个相同或者相似的子问题,再把子问题分成更小的子问题,一直分到子问题足够简单来求解,最后再把子问题的解合并成原问题的解。归并排序法的时间复杂度为 O(nlogn),空间复杂度为 临时的数组 + 递归时压入栈的数据占用的空间 = n + logn,即 O(n)。
以数组 {7, 5, 6, 4} 为例进行分析,解题过程如图5.2所示。首先将数组拆成至长度为1的子数组,然后一边合并一边统计逆序对的数目。在第一对长度为1 的子数组 {7}、{5}中,有一对逆序对 (7, 5)。在第二对长度为1的子数组 {6}、{4}中,也有一对逆序对(6, 4)。在统计完这两对逆序对后,需要分别对他们进行排序,如图 5.2(c),以免在以后的统计过程中再重复统计。
然后需要统计两个长度为2的子数组之间的逆序对,并合并两个子数组,如图5.3所示。两个子数组分别从末尾开始判断数的大小,如图5.2(a)中指针P1、P2。如果 P1 大于 P2,则构成逆序对,并且逆序对的数目等于第二个子数组中剩余数字的个数,即 P2 以及之前的所有数字的个数。如果 P1 小于或等于 P2, 则不构成逆序对。每次比较的时候,我们都把较大的数字从后往前复制到一个辅助数组,确保辅助数组中的数字是递增排序的。在把较大的数字复制到辅助数组之后,把对应的指针向前移动一位,接下来进行下一轮比较。
以此类推,使用这个方法去求出其他数组的逆序对个数。在解这一题的时候,还有一点需要注意,除了需要将总输出结果 (count + countL + countR) 对1000000007取模,还要在计算过程中将 count += j + 1 对1000000007取模,以免count超出 Integer.MAX_VALUE。
以上是关于剑指offer-36:数组中的逆序对的主要内容,如果未能解决你的问题,请参考以下文章