使用R语言进行机制检测的隐马尔可夫模型
Posted tecdat
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用R语言进行机制检测的隐马尔可夫模型相关的知识,希望对你有一定的参考价值。
在本文中,将对“牛市”和“熊市”两个独立机制下的市场收益进行模拟。隐马尔可夫模型识别处于特定状态的概率。
在概述了模拟数据的过程之后,将隐马尔可夫模型应用于美国股票数据,以确定基本机制。
市场体制
将隐马尔可夫模型应用于状态检测是棘手的,因为该问题实际上是无监督学习的一种形式。也就是说,没有“基础事实”或标记数据可在其上“训练”模型。 是否有两个,三个,四个或更多个“真正的”隐藏市场机制?
这些问题的答案在很大程度上取决于要建模的资产类别,时间范围的选择以及所使用数据的性质。
模拟数据
在本节中,从独立的高斯分布中生成模拟的收益率数据,每个分布都代表“看涨”或“看涨”的市场机制。看涨收益来自均值正且方差低的高斯分布,而看跌收益来自均值略为负但方差较高的高斯分布。
第一个任务是安装depmixS4和quantmod库,然后将它们导入R。
在牛市分布N(0.1,0.1)N(0.1,0.1)而空头市场分布为N(−0.05,0.2)N(−0.05,0.2)。通过以下代码设置参数:
第kk个周期的收益是随机抽取的:
创建真实状态
绘制收益图可显示切换之间均值和方差的明显变化:
在此阶段,可以使用Expectation Maximization算法指定隐马尔可夫模型并进行拟合:
在模型拟合之后,可以绘制处于特定状态的后验概率。post_probs
包含后验概率。
财务数据
在本节中,将执行两个单独的建模任务。第一种将使HMM具有两个机制状态以拟合S&P500收益率,而第二个将利用三个状态。比较两个模型之间的结果。
使用quantmod库下载:
绘制gspcRets
时间序列显示2008和2011时期:
使用EM算法拟合隐马尔可夫模型。每种方案的收益率和后验概率作图:
请注意,在2004年和2007年期间,市场较为平静,因此在此期间,隐马尔可夫模型第二种机制的可能性较高。然而,在2007年至2009年之间,由于次贷危机。
市场在2010年变得较为平静,但在2011年又出现了更多动荡,这导致HMM再次给第一类机制带来了较高的后验概率。2011年之后,市场再次趋于平静,HMM始终给第二种机制以高概率。2015年,市场再次变得更加混乱,这反映在HMM机制之间的切换增加。
数据的长度使后验概率图难以解释。由于该模型被迫考虑三个单独的机制,因此在2004-2007年的平静时期导致了机制2和机制3之间的转换。但是,在2008、2010和2011年的动荡时期,机制1主导着后验概率,表明高度波动状态。在2011年之后,模型恢复为在机制2和机制3之间切换。
以上是关于使用R语言进行机制检测的隐马尔可夫模型的主要内容,如果未能解决你的问题,请参考以下文章