(Concurrent)HashMap的存储过程及原理。

Posted wangfl5

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了(Concurrent)HashMap的存储过程及原理。相关的知识,希望对你有一定的参考价值。

1.前言

  看完咕泡Jack前辈的有关hashMap的视频(非宣传,jack自带1.5倍嘴速,高效),收益良多,所以记录一下学习到的东西。

2.基础用法

  技术图片

   源码的注释首先就介绍了哈希表是基于Map接口,所以它的用法和其他集合的用法差不多。

/**
 * Hash table based implementation of the <tt>Map</tt> interface.  This             * 哈希表的实现基于<tt>Map</ tt>接口。
 * implementation provides all of the optional map operations, and permits          * 此实现提供所有可选的映射操作,
 * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>           * 并允许<tt> null </ tt>值和<tt> null </ tt>键。
 * class is roughly equivalent to <tt>Hashtable</tt>, except that it is             * (<tt> HashMap </ tt>类与<tt> Hashtable </ tt>大致等效,
 * unsynchronized and permits nulls.)  This class makes no guarantees as to         * 除了它是不同步的,并且允许为null。) , 此类不保证映射的顺序。
 * the order of the map; in particular, it does not guarantee that the order        * 特别是不能保证订单将随着时间的推移保持不变。
 * will remain constant over time.

  对应的源码,如图所示,它继承了抽象Map类,实现了Map接口:

       public class HashMap<K,V> extends AbstractMap<K,V>  implements Map<K,V>, Cloneable, Serializable { ... }

     至于具体咋用,不多介绍,推一个链接,HashMap的基础用法:https://blog.csdn.net/lzx_cherry/article/details/98947819

3.存储方式

下面就是介绍一个HashMap完成put(key, value)操作之后的存储流程。

  (1)HashMap key、value被put后的存储方式:

    在JDK1.7及其之前都是用的 数组+链表 的方式,JDK1.8之后存储方式优化成了 数组+链表+红黑树 的方式。

  (JDK1.8后,如果单链表存储的长度大于8则转换为红黑树存储,采用这样的改善有利于解决hash冲突中链表过长引发的性能下降问题)

  (2)图解HashMap的主要数据结构:

     技术图片

  <1>存储单元 Node

  图中的每一个格子代表每一个Node对象。Node的信息主要包含它的存储位置,key,value,如果在链表中则会有下一个Node的信息,如果存储在红黑树中则包含红黑树的相关信息。

  由上面我们可以写出Node数据结构的伪代码:
      Node[] table;   数组
      class Node{ Node next; }  链表
      TreeNode(left, right, parent, boolean flag = red| black)  红黑树

  而HashMap源码中Node的代码和上面伪代码的一致:

    /**
     * Basic hash bin node, used for most entries.  (See below for
     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
     */
    static class Node<K,V> implements Map.Entry<K,V> {
        //通过hash算法得出的存储位置
        final int hash;
        //key
        final K key;
        //value
        V value;
        //链表的下个Node
        Node<K,V> next;
     ...
  }

  HashMap源码中TreeMap的代码(建议之前先了解红黑树的原理):

    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
    ... }

  <2>存储过程

  根据HashMap的数据结构,可以大致推断出它的存储过程。

    a.先创建一个数组

    b.计算出存储key value的Node的位置

    c.如果hash冲突了,判断冲突数目的长度决定使用链表还是红黑树结构

    d.数组不够需要进行扩容

  下面对存储过程进行细致的分析。

  1.计算出存储key value的Node的位置

  先分析这个有助于其他的理解,这也是理解存储过程一个比较基础重要的内容。

  计算出Node的位置,就是需要得到Node在数组中的整型数下标,但是前提是不超出数组的大小。HashMap数组的大小可以采用默认值,也可以自行规定,这边我们采用默认的值16进行分析。

  首先,要保证是个整型数,最好还是和key value有关联的,所以最好的方式就是通过key.hashCode()。其次,我们需要保证Node的index大小在0~15之间。所以我们可以先进行一个取余判断,判断: 整型数%16 = [ 0 , 15 ]。

   分析取余:

    例如一个数字1,hashCode的值为49,那么取余的操作就为 49 % 16 = 1。但是这样的取模方式还可以进行优化,49的10进制整型数转化为32位二进制:
                    0000 0000 0000 0000 0000 0000 0011 0001 % 16 = 1
      对16进行取余,其实效果就相当于对(16-1)进行与操作:0000 0000 0000 0000 0000 0000 0011 0001 & 0111,因为与操作时候与的时候,最后四位的范围是[0,15],如果大于15的话,就进位了,这样可以更有效控制整形数的范围。     

              0000 0000 0000 0000 0000 0000 0011 0001 
                                                        0 1111  &操作   (数组大小 - 1)
           ————————————————————————————————————————————————
                                                         0001(结果)

      最终返回的结果就是Node在数组中的位置index了。index如果相同的话就会产生位置冲突,这时候就需要链表和红黑树数据结构,但这样会使得我们去获取key value变得更加耗时。所以我们需要尽量保证index就是Node的位置不要太容易就出现重复的情况。

   从上的与过程中我们可以看出,能决定Node位置取决在两个相与的数(暂称为key1和key2),这两个数的后4位决定了Node的位置,如果要保证hash不冲突的话,就要先分析他们。与操作,一方为0就结果为0,key2的最后四位值如果一个为0的话,无论key1对应的是什么,结果都是0,这样极其容易导致冲突,所以我们要尽量保证key2除了最高为0外。其他位置都1。例如:01111(15)、011111(31)、0111111(63),不难看出key2的值,其实就是2的n次幂-1。所以我们需要尽量保证数组的大小为2的n次幂。但是即便保证了后四位都为1的话,毕竟只有4位,4位进行与操作,还是很容易出现一个重复情况,对于这种情况,HashMap采用了异或(xor)操作( a⊕b = (¬a ∧ b) ∨ (a ∧¬b) )。

  具体操作,将32位的二进制数字一分为二,左边16位的高16位为一份,右边的低16位为另一份。两者进行异或运算,降低重复的可能性。

        如:

            高16位                               低16位

        0101 0101 0010 1001   |   0001 0001 0001 0110 

  其实这就是HashMap中的hash算法,源码:

    static final int hash(Object key) {
        int h;
//如果key为null则返回0,如果不为null则返回key的hashCode高低16位异或运算的结果 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }

  如果再重复就只能形成链表和红黑树了。

  2.创建数组以及数组的扩容

  如果采用默认的大小的话,默认的数组大小为16。源码:   

    /**
* The default initial capacity - MUST be a power of two.
   * 默认初始容量为16,必须为2的幂
   * 表示1,左移4位,变成10000,也就是16 */
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

       至于为什么不采用int DEFAULT_INITIAL_CAPACITY = 16;,一方面是省略了中间一些复杂的转换过程,直接以二进制形式去运行运算,另一方面也是配合2次幂的约束条件。

  当然我们知道,HashMap数组的大小也是可以自己定义的。自己定义和默认有啥区别,如果你使用了阿里的checkstyle,初始化HashMap使用了默认的大小,这时候规约就会提示你需要自己定义

HashMap的大小。我们可以看一下阿里巴巴的规约:

技术图片

  上面说的很清楚了,如果不指定初始化的大小,容易引起多次的扩容操作,影响性能。并给出了推荐的初始化值 = (需要存储的元素个数 / 负载因子) + 1;

  负载因子决定了数组扩容的阔值,如果一个数组大小为20,负载因子为0.75,那么数组长度到达15的时候,数组就会进行扩容操作。15也就是数组扩容的阔值,0.75就称为负载因子,附上源码:

  源码中的load factor也就是负载因子,规定的大小为0.75,也就是3/4。

    /**
     * The load factor used when none specified in constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

  如果自己进行初始化数组的值,那么是不是就可以随意设置值了呢?看一下源码就知道了:

  初始化大小必须大于等于0,且是有最大值的。

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and load factor.
     *
     * @param  initialCapacity the initial capacity      初始化大小
     * @param  loadFactor      the load factor       负载因子
     * @throws IllegalArgumentException if the initial capacity is negative
     *         or the load factor is nonpositive
     */
    public HashMap(int initialCapacity, float loadFactor) {
        //如果初始化大小小于0,抛出异常
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        //如果初始化大小大于最大值,则将初始化值设为最大值
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        //阔值,该方法保证了数组初始化大小为2的次幂
        this.threshold = tableSizeFor(initialCapacity);
    }

  最大值:(1073741824)

    static final int MAXIMUM_CAPACITY = 1 << 30;

  阔值:

    /**
     * Returns a power of two size for the given target capacity.
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        //位或操作,一步一步保证最后几位都1
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        //如果n小于0返回1,不然返回小于最大值的n+1值
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

  上面就是哈希中数组初始化的内容,接下来说一下数组扩容的方式。

  1.首先需要知道的是,扩容是扩成多大的容量。

  从源码中的must be power of two,就是必须是2的n次幂就可以推断出扩容的方式是double,也就是将数组大小翻倍。

  2.新数组如何创建,以及如何重新散列。(重新散列:把老数组中的Node移到到新的数组。)

  新数组的大小我们已经可以确定为旧数组大小的2倍,现在主要的问题就是重新散列,也就是把旧的数组中Node转移到新的数组中去。普遍的做法就是遍历旧的数组,将非空的Node依次赋值给新的数组。

如果Node节点下面是链表就遍历链表,再赋值给新数组的Node节点。如果是红黑树,也是一样打散重排。这样的做法很简单,让我们一起看一下源码(较长):

    /** 
     * 
     *初始化或增加表大小。 如果为null,则分配
     *符合在现场阈值中保持的初始容量目标。
     *否则,因为我们使用的是二次幂扩展,所以
     *每个bin中的元素必须保持相同的索引或移动
     *在新表中具有两个偏移量的幂。
     *
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        //旧的Node数组
        Node<K,V>[] oldTab = table;
        //获取旧的数组长度,如果为null则返回0
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        //旧数组的阔值
        //threshold :The next size value at which to resize (capacity * load factor).
        //下一个要调整大小的大小值(容量*负载系数)。
        int oldThr = threshold;
        //新的数组和新的阔值
        int newCap, newThr = 0;
        //如果旧数组长度大于0
        if (oldCap > 0) {
            //限制最大值
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //限制新的阔值大小
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                //这边就是对新的数组阔值进行翻倍
                newThr = oldThr << 1; // double threshold
        }
        //初始化新数组的值
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            //如果之前的阔值小于0,新的数组大小设置为16,阔值设置为 16 * 0.75f
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            //如果之前的阔值=0,赋值给新的阔值
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        //全局变量的阔值变化
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        //新的哈希表
        table = newTab;
        if (oldTab != null) {
            //不为空的情况下遍历
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                //如果Node节点不为null
                if ((e = oldTab[j]) != null) {
                    //之前的值删除(就是设置为null)
                    oldTab[j] = null;
                    //如果不为链表和红黑树
                    if (e.next == null)
                        //直接赋值给新的哈希表
                        newTab[e.hash & (newCap - 1)] = e;
                    //如果Node是红黑树数据结构,打散重排
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        //不然就是链表,对链表进行遍历 赋值到新的的哈希表
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

  但是在赋值的过程中,需要注意所有的位置都进行了新的一轮hash运算,在 【1.计算出存储key value的Node的位置 】中可以知道key2的值形式要保持是01111……11的形式。

  之前的操作是这样的:

             0000 0000 0000 0000 0000 0000 0011 0001 
                                                           0 1111  &操作   (数组大小 - 1)
           ————————————————————————————————————————————————
                                                              0001(结果)  --- 1

   但是我们现在对key2的值进行了翻倍,那么随之与操作的结果也会变化,也就是在新的数组中Node的位置以及发生了变化,具体看下面:

           0000 0000 0000 0000 0000 0000 0010 0001      key1的值 第一种情况

           0000 0000 0000 0000 0000 0000 0011 0001      key1的值 第二种情况
                                                           01 1111  &操作   (新数组大小 = 旧数组大小 * 2,比之前左边多了一位1)
           ————————————————————————————————————————————————

                                    00  0001(第一种结果) ---1                  

                          第一种情况,key1的值和之前的值一样,也就是重新散列的位置不变
                                                          01  0001(第二种结果) ---17     

                             第二种情况,key1的值比之前的值大16(数组的长度),也就是重新散列的位置发生了变化

  所以,哈希resize后,之前旧数组的Node在新数组中的位置有两种情况:1.保持和旧数组一样  2.旧数组的位置+旧数组的大小

  在注释部分,就交代了“刷新”操作是会重建内部数据结构的。

 * <p>An instance of <tt>HashMap</tt> has two parameters that affect its            * <p> <tt> HashMap </ tt>的实例有两个参数会影响其性能:<i>初始容量</ i>和<i>负载系数</ i>。
 * performance: <i>initial capacity</i> and <i>load factor</i>.  The                * 容量只是创建哈希表时的容量。
 * <i>capacity</i> is the number of buckets in the hash table, and the initial        * <i>负载因子</ i>是衡量哈希表允许填充的程度的度量在容量自动增加之前获取 。
 * capacity is simply the capacity at the time the hash table is created.  The        * 当哈希表中的条目超过了负载系数和当前容量,
 * <i>load factor</i> is a measure of how full the hash table is allowed to           * 哈希表被<i>刷新</ i>(即内部数据结构已重建),
 * get before its capacity is automatically increased.  When the number of            * 因此哈希表的大小大约是原来容量的2倍。
 * entries in the hash table exceeds the product of the load factor and the            
 * current capacity, the hash table is <i>rehashed</i> (that is, internal data    
 * structures are rebuilt) so that the hash table has approximately twice the        
 * number of buckets.
 *

  3.key和value的put经历

  上面说的都是关于Node的位置问题,如果Node位置确定了,那么剩下的就只剩putNode里面的key和value了。首先,一个数组里面put一个Node,我们需要思考这个位置是否是NULL,如果为NULL的话,就在该位置new 一个Node ;如果不为NULL,那么就需要判断put的内容是覆盖原来的value还是新增一个Node,新增又分为链表新增和红黑树新增。具体的源码如下:

   /**
     * Implements Map.put and related methods 实现Map.put及相关方法
     *
     * @param hash hash for key hash算法算出的Node位置
     * @param key the key 键 
     * @param value the value to put 放置的值
     * @param onlyIfAbsent if true, don‘t change existing value onlyIfAbsent如果为true,请不要更改现有值
     * @param evict if false, the table is in creation mode. 退出,如果为false,则表处于创建模式。
     * @return previous value, or null if none  上一个值,如果没有则返回null
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //初始化哈希表
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //获取在哈希表中的位置,并且判断该位置是否为null,如果是null 直接就创建新的Node
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            //如果该位置不为null,则可能为链表或者红黑树
            Node<K,V> e; K k;
            //如果key值相同,hash也相同,则替换value的值
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //红黑树存储
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            //链表存储
            else {
                //遍历链表
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        //尾部插入
                        p.next = newNode(hash, key, value, null);
                        //如果长度大于8 (TREEIFY_THRESHOLD = 8)
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            //链表转换为红黑树
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        //数组长度大于阔值
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

   getNode的源码和上面的如出一辙,也很好理解,贴一下:

    /**
     * Implements Map.get and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

4.ConcurrentHashMap以及线程安全

  先看一下同样是线程安全的HashTable是如何保证线程安全的:

    public synchronized V put(K key, V value) {
        // Make sure the value is not null
        if (value == null) {
            throw new NullPointerException();
        }

  由上面的源码可以看出synchronized关键字直接约束了整个put方法,这样线程虽然是安全的,但是效率过于低下。对比之下ConcurrentHashMap的锁设计就更为精确化,因为对于一个put方法,后者把它大致分为几个步骤,通过对每个步骤进行线程安全约束来提升效率。(index:数组下标)

  大致的put步骤:map.put(K,V)—>  new Node[]创建数组 —> index == null(数组位置值为null,直接创建) —> index!=null(加入链表,红黑树) —> resize()扩容

  1.保证初始化哈希表线程安全

  在创建数组的时候,通过乐观锁机制(CAS)保证只有一个线程去初始化数组;

  初始化的源码:

//putVal 方法中 
if (tab == null || (n = tab.length) == 0)
          //初始化 tab = initTable();
    /**
     * Initializes table, using the size recorded in sizeCtl.
     */
    private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
            //如果SIZECTL<0,就代表已经有一个线程在执行初始化了,进行线程让步
            if ((sc = sizeCtl) < 0)
                Thread.yield(); // lost initialization race; just spin
            //CAS 乐观锁机制保证数组初始化线程安全,如果当前对象的值==SIZECTL,则认为线程安全,返回-1
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        sc = n - (n >>> 2);
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }

  2.数组下标index为null时候

  如果数组下标的值为null,也是通过乐观锁机制保证线程安全,源码:

    /** Implementation for put and putIfAbsent */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            //如果数组下标的值为null,也是通过乐观锁机制保证线程安全
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }

  3.数组下标不为null

  数组下标不为null的话,那么就是链表和红黑树结构,如果再用CAS去保证线程安全就需要对链表和红黑树中的元素依次去进行compareAndSwapInt,很麻烦。所以在这边,我们可以将链表或者红黑树的头节点锁住,就可以保证一整个链表红黑树的线程安全,并且影响的范围很小。

  源码:

  通过对头节点(数组下标)的锁,保证一整个链表和红黑树的线程安全。

 //如果数组下标的值为null,也是通过乐观锁机制保证线程安全
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                //如果下标不为null,那么就是链表和红黑树结构,如果再用CAS去保证线程安全就需要对链表和红黑树中的元素依次去进行compareAndSwapInt,
                //所以在这边,我们可以将链表或者红黑树的头节点锁住,就可以保证一整个链表红黑树的线程安全
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }

  完整的putVal源码:

   /** Implementation for put and putIfAbsent */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            //如果数组下标的值为null,也是通过乐观锁机制保证线程安全
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            //如果不是初始化数组的线程的话,就去帮忙重新散列
       //MOVED 的值为-1
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                //如果下标不为null,那么就是链表和红黑树结构,如果再用CAS去保证线程安全就需要对链表和红黑树中的元素依次去进行compareAndSwapInt,
                //所以在这边,我们可以将链表或者红黑树的头节点锁住,就可以保证一整个链表红黑树的线程安全
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
    //每次put都会统计数组的大小,以确定是否扩容
        addCount(1L, binCount);
        return null;
    }

  4.扩容的线程安全

  一个线程去扩容的时候,其他的线程一定是不能进行扩容和进行操作的,需要进入等待状态。这样等待状态占据着CPU但是却不做事情,所以对此进行了优化,保证只有一个线程能去初始化,剩下等待的线程共同完成重新散列。

  比如一个数组tab[]大小16,一个线程去负责扩容成大小32的新数组。剩下的等待线程中,a线程去从数组末尾开始向前领取一个区间的Node进行重新散列,例如区间(tab[13]~tab[15] ),a线程去负责对区间的Node进行重新散列。如果在a完成了,还没有其他的扩容(或者put)线程进入变成等待线程的话,a就会继续领取一个区间的任务进行散列,如果有一个线程b要进行扩容,因为扩容已经有线程在做了,b随之进入等待状态,这时候b线程就会去帮着a线程去完成剩下区间的散列任务。以此反复。

  分析上面的过程,侧重就2个,第一个保证一个线程初始化数组,第二保证剩下的线程去帮助扩容。

  源码实现:

  统计源码:

 /**
     * Adds to count, and if table is too small and not already
     * resizing, initiates transfer. If already resizing, helps
     * perform transfer if work is available.  Rechecks occupancy
     * after a transfer to see if another resize is already needed
     * because resizings are lagging additions.
     *
     * @param x the count to add
     * @param check if <0, don‘t check resize, if <= 1 only check if uncontended
     */
    private final void addCount(long x, int check) {
        CounterCell[] as; long b, s;
        if ((as = counterCells) != null ||
            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
            CounterCell a; long v; int m;
            boolean uncontended = true;
            if (as == null || (m = as.length - 1) < 0 ||
                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                !(uncontended =
                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                fullAddCount(x, uncontended);
                return;
            }
            if (check <= 1)
                return;
            //统计的结果s
            s = sumCount();
        }
        if (check >= 0) {
            Node<K,V>[] tab, nt; int n, sc;
            //如果s大于阔值,则需要进行扩容
            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                   (n = tab.length) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                //sc = 阔值
                if (sc < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                }
                //阔值大于0 进行初始化 乐观锁保证线程安全
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                             (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);
                s = sumCount();
            }
        }
    }

  任务代码:  

 /**
     * Moves and/or copies the nodes in each bin to new table. See
     * above for explanation.
     */
    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
     //确定任务的大小=16
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
     //初始化数组线程

        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;
        }
     //非初始化线程
        int nextn = nextTab.length;
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
     //不断领取任务
        boolean advance = true;
     //标记重新散列任务是否完成
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
       //领取散列任务
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
       //执行散列
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
          //完成扩容
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
            //扩展改变
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
          //没有完成扩容,汇报自己的完成任务
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
          //迁移数据操作,和HashMap一致
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node<K,V> ln, hn;
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

  再精细的就不会了。

以上是关于(Concurrent)HashMap的存储过程及原理。的主要内容,如果未能解决你的问题,请参考以下文章

HashMap集合底层的数据结构以及HashMap集合的存储键值对数据的过程

HashMap 和 ConcurrentHashMap,Java1.8版本

java缓存及读写锁实例应用

HashMap的存储结构及原理

HashMap原理 — 扩容机制及存取原理

java 实现百度地图的地址解析及在数据库的读取存储过程