习题:寿司晚宴(状压DP)

Posted loney-s

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了习题:寿司晚宴(状压DP)相关的知识,希望对你有一定的参考价值。

题目

传送门

思路

比较恶心的一道状压

如果你一开始就看最大范围,

你的心中可能一点想法都没有

但是如果你从最小的数据开始看

也就是(nle 30)

如果你对质数足够熟悉的话

那么你会发现30以内的质数是10

还有一点,题目中对不和谐度的描述最关键的一点是互质

这说明了什么?

30分的思路时间复杂度极可能为(O(n*2^n*2^n))

也就是状压,(2^n)的意义就为在二进制下,第i个质数是否出现

之后我们就可以很简单的统计出来。

很显然这个做法是可以推广的

我们依然是存一个二进制,之后多存一个变量来针对剩下的质数,也就是超过 (sqrt n)的大质数

很显然,对于一个美味度,大质数只有一个

我们可以设(f_{i,j})为小G拿的数的所有的质因数的状态为i,小W拿的数的所有的质因数状态为j

但是我们发现这个状态并没有考虑大质数的情况

我们再设(dp_{n,i,j,t})表示第n个大质数属于i状态还是j状态,t为1就是属于i集合,反之则为j集合

比较好想的是(n)的那一位可以直接滚掉

我们先将所有美味度分解,

再按大质数的大小从小到大排序

之后就是状压的标准操作

枚举两个集合

如果两个集合没有相交,也就是&之后为0

你就把当前的美味度塞进去即可

转移方程即为

(dp_{j|sus[i].sta,k,1}+=dp_{j,k,1})

当然,同理,当前这个美味度也可以塞到k集合,

(dp_{j,k|sus[i].sta,0}+=dp_{j,k,0})

我们再想大质数怎么办

如果(sus[i].p!=sus[i-1].p)

就用一个类似于刷表的方式

(dp_{i,j,0}=dp_{i,j,1}=f_{i,j})

如果(sus[i].p!=sus[i+1].p)

同上

(f_{i,j}=dp_{i,j,1}+dp_{i,j,0}-f_{i,j})

代码

#include<iostream>
#include<algorithm>
using namespace std;
#define int long long
struct node
{
    int sta;
    int p;
    friend bool operator < (const node &a,const node &b)
    {
        return a.p<b.p;
    }
}sus[505];
int n,mod;
int pri[10]={2,3,5,7,11,13,17,19};
int dp[(1<<10)][(1<<10)][2];
int f[(1<<10)][(1<<10)];
long long ans;
signed main()
{
    cin>>n>>mod;
    f[0][0]=1;
    for(int i=2;i<=n;i++)
    {
        int t=i;
        for(int j=0;j<=7;j++)
        {
            if(t%pri[j]==0)
            {
                sus[i].sta|=(1<<j);
                while(t%pri[j]==0)
                    t/=pri[j];
            }
        }
        sus[i].p=t;
    }
    sort(sus+2,sus+n+1);
    for(int i=2;i<=n;i++)
    {
        if(sus[i].p==1||sus[i].p!=sus[i-1].p)
        {
            for(int j=0;j<(1<<8);j++)
            {
                for(int k=0;k<(1<<8);k++)
                {
                    dp[j][k][0]=dp[j][k][1]=f[j][k];
                }
            }
        }
        for(int j=(1<<8)-1;j>=0;j--)
        {
            for(int k=(1<<8)-1;k>=0;k--)
            {
                if((sus[i].sta&k)==0)
                {
                    dp[j|sus[i].sta][k][1]=(dp[j|sus[i].sta][k][1]+dp[j][k][1])%mod;
                }
                if((sus[i].sta&j)==0)
                {
                    dp[j][k|sus[i].sta][0]=(dp[j][k|sus[i].sta][0]+dp[j][k][0])%mod;
                }
            }
        }
        if(sus[i].p==1||sus[i].p!=sus[i+1].p)
        {
            for(int j=0;j<(1<<8);j++)
            {
                for(int k=0;k<(1<<8);k++)
                {
                    f[j][k]=((dp[j][k][0]+dp[j][k][1]-f[j][k])%mod+mod)%mod;
                }
            }
        }
    }
    for(int i=0;i<(1<<8);i++)
    {
        for(int j=0;j<(1<<8);j++)
        {
            if((i&j)==0)
            {
                ans=(ans+f[i][j])%mod;
            }
        }
    }
    cout<<ans;
    return 0;
}

以上是关于习题:寿司晚宴(状压DP)的主要内容,如果未能解决你的问题,请参考以下文章

NOI2015寿司晚宴状压DP

BZOJ4197[Noi2015]寿司晚宴 状压DP+分解质因数

BZOJ 4197 NOI 2015 寿司晚宴 状压DP

N - 寿司晚宴 HYSBZ - 4197 状压dp

bzoj 4197: [Noi2015]寿司晚宴状压dp

寿司晚宴题解