爬取BabyNames

Posted wt714

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了爬取BabyNames相关的知识,希望对你有一定的参考价值。

技术图片

 技术图片

   网络爬虫是从web中发现,下载以及存储内容是搜索引擎的核心部分传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列直到满足系统的一定停止条件。

   获取A-Z每个名字的姓名(Ename)ORIGIN/USAGESOURCEMEANING,More info about the name等,并存入csv中。

 

调试过程中遇到的问题

(1)只能爬取A姓名字第一页

解决方案:用一个for循环来获取A姓名字的所有页

 技术图片

 

2)只能爬取A姓所有名字,不能爬取 A-Z所有名字

解决方案:嵌套一个for循环,遍历A-Z

技术图片

 

 3)不知道如何获取名字的性别

 解决方案:发现他隐含在标签中,先获取他的标签,再用正则表达式

技术图片

 

4)爬取时间太长

 解决方案:添加headers,分别写入两个文件,然后写入读取

 

(5写入csv的问题

 解决方案:写入csv的方法有很多,我选择了pandas模块中的方法。因为考虑到有不少列表需要写入,为了表格的美观,选择了具有二维数组特征的Dataframe来直接写入csv

 

 代码

#获取所有BabyNames
import
requests from bs4 import BeautifulSoup import re import io import sys import pandas as pd import time sys.stdout = io.TextIOWrapper(sys.stdout.buffer,encoding=gb18030) url_base="https://babynames.net/all/starts-with/" names_list = [] headers = { user-agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (Khtml, like Gecko) Chrome/75.0.3770.100 Safari/537.36, cookie: __gads=ID=393fb892132ab899:T=1575784353:S=ALNI_Mb1L-D-T9C5w-Xf-Q2Qx2cWkHuyXQ; __utmc=162764335; __utmz=162764335.1575784365.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utmt=1; __utma=162764335.357337691.1575784352.1575784352.1575784352.1; __utmb=162764335.1.10.1575784365; _omappvp=OclocO2kUZEzf0PDHSVwl1dU5Aqr14TLWMKmLL5D0FwX7E6cWz1zX7SgHo3Flip2e0WsWWtGEXa3T14HpH4yiJVdahVerZBL; _omappvs=1575784367123; __atuvc=1%7C50; __atuvs=5dec8fad55e05242000 } for i in range(ord("A"),ord("Z")+1): url1 = url_base+str.lower(chr(i)) for j in range(2): url1_new = url1+?page=+str(j+1) r=requests.get(url1_new,headers=headers) time.sleep(1) demo=r.text soup=BeautifulSoup(demo,"html.parser") Ename=soup.find_all(attrs={class: result-name}) aa = Ename[:] bb = [str(i) for i in aa] cc = ‘‘.join(bb) pattern = re.compile(class="result-name">(.*?)</span>, re.S) results = re.findall(pattern, cc) #print("has scaped:",url1_new) for result in results: names_list.append(result) f=open("wt.txt","w+") f.write(str(names_list)) f.close() print(names_list)

所有BabyNames的信息,并存入csv中

import requests
from bs4 import BeautifulSoup
import re
import pandas as pd
import time

headers = {
    user-agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36,
    cookie: __gads=ID=393fb892132ab899:T=1575784353:S=ALNI_Mb1L-D-T9C5w-Xf-Q2Qx2cWkHuyXQ; __utmc=162764335; __utmz=162764335.1575784365.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utmt=1; __utma=162764335.357337691.1575784352.1575784352.1575784352.1; __utmb=162764335.1.10.1575784365; _omappvp=OclocO2kUZEzf0PDHSVwl1dU5Aqr14TLWMKmLL5D0FwX7E6cWz1zX7SgHo3Flip2e0WsWWtGEXa3T14HpH4yiJVdahVerZBL; _omappvs=1575784367123; __atuvc=1%7C50; __atuvs=5dec8fad55e05242000
}
with open(wt.txt) as f:
    names_list_1 = list(f)
names_list_2= .join(names_list_1)
names_list=eval(names_list_2)
url_intro = https://babynames.net/names/
orgin_list = []
sex_list = []
intro_list = []
for i in names_list:
    url_In = url_intro+str.lower(i)

    res = requests.get(url_In,headers=headers).text
    time.sleep(1)
    soup=BeautifulSoup(res,"html.parser")
    res1 = soup.body

    cop3 = re.compile(r<span class="result-gender (.*?)"></span>)
    sex = re.findall(cop3,str(res1))
    sex_1= .join(sex)
    sex_list.append(sex_1)

    cop = re.compile(r<dd>(.*?)</dd>)
    orgin = re.findall(cop,str(res1))
    orgin_1= .join(orgin)
    orgin_list.append(orgin_1)

    cop1 = re.compile(r<p>(.*?)</p>)
    intro = re.findall(cop1,str(res1))
    intro_1= .join(intro)
    intro_list.append(intro_1)
    print("has got:",i)

print("scrapy ended!")
print("starting write in frame...")
data = {
    EnName: names_list,
    Gender:sex_list,
    ORIGIN/USAGE  PRONUNCIATION  MEANING:orgin_list,
    Description:intro_list
}
frame = pd.DataFrame(data)
frame.to_csv(wt2.csv)
print(Completed!!!)

运行结果

技术图片

 

 总结:

       其实本质上来说爬虫就是一段程序代码。任何程序语言都可以做爬虫,只是繁简程度不同而已。从定义上来说,爬虫就是模拟用户自动浏览并且保存网络数据的程序,当然,大部分的爬虫都是爬取网页信息(文本,图片,媒体流)。但是人家维护网站的人也不是傻的,大量的用户访问请求可以视为对服务器的攻击,这时候就要采取一些反爬机制来及时阻止人们的不知道是善意的还是恶意的大量访问请求。

以上是关于爬取BabyNames的主要内容,如果未能解决你的问题,请参考以下文章

scrapy主动退出爬虫的代码片段(python3)

python小白学习记录 多线程爬取ts片段

如何从以下架构中选择列“?

Python 利用爬虫爬取网页内容 (div节点的疑惑)

python解决m3u8直播视频的爬取

Python爬虫腾讯视频m3u8格式分析爬取(附源码,高清无水印)