模板 - 数据结构 - Treap
Posted kisekipurin2019
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了模板 - 数据结构 - Treap相关的知识,希望对你有一定的参考价值。
还有人把Treap叫做树堆的,但是常用名还是叫做Treap的比较多。
不进行任何封装的,带求和操作的,一个节点存放多个元素的最普通的Treap。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define ls ch[id][0]
#define rs ch[id][1]
const int INF = 1e9;
const int MAXN = 1000000 + 5;
int ch[MAXN][2], dat[MAXN];
int val[MAXN];
int cnt[MAXN];
int siz[MAXN];
ll sum[MAXN];
int tot, root;
inline void Init() {
tot = 0;
root = 0;
}
inline int NewNode(int v, int num) {
int id = ++tot;
ls = rs = 0;
dat[id] = rand();
val[id] = v;
cnt[id] = num;
siz[id] = num;
sum[id] = 1ll * num * v;
return id;
}
inline void PushUp(int id) {
siz[id] = siz[ls] + siz[rs] + cnt[id];
sum[id] = sum[ls] + sum[rs] + 1ll * cnt[id] * val[id];
}
inline void Rotate(int &id, int d) {
int temp = ch[id][d ^ 1];
ch[id][d ^ 1] = ch[temp][d];
ch[temp][d] = id;
id = temp;
PushUp(ch[id][d]);
PushUp(id);
}
//插入num个v
inline void Insert(int &id, int v, int num) {
if(!id)
id = NewNode(v, num);
else {
if(v == val[id])
cnt[id] += num;
else {
int d = val[id] > v ? 0 : 1;
Insert(ch[id][d], v, num);
if(dat[id] < dat[ch[id][d]])
Rotate(id, d ^ 1);
}
PushUp(id);
}
}
//删除至多num个v
void Remove(int &id, int v, int num) {
if(!id)
return;
else {
if(v == val[id]) {
if(cnt[id] > num) {
cnt[id] -= num;
PushUp(id);
} else if(ls || rs) {
if(!rs || dat[ls] > dat[rs])
Rotate(id, 1), Remove(rs, v, num);
else
Rotate(id, 0), Remove(ls, v, num);
PushUp(id);
} else
id = 0;
} else {
val[id] > v ? Remove(ls, v, num) : Remove(rs, v, num);
PushUp(id);
}
}
}
//查询v的排名,排名定义为<v的数的个数+1。
int GetRank(int id, int v) {
int res = 1;
while(id) {
if(val[id] > v)
id = ls;
else if(val[id] == v) {
res += siz[ls];
break;
} else {
res += siz[ls] + cnt[id];
id = rs;
}
}
return res;
}
//查询排名为rk的数,rk必须是正整数,rk过大返回无穷
int GetValue(int id, int rk) {
int res = INF;
while(id) {
if(siz[ls] >= rk)
id = ls;
else if(siz[ls] + cnt[id] >= rk) {
res = val[id];
break;
} else {
rk -= siz[ls] + cnt[id];
id = rs;
}
}
return res;
}
//查询v的前驱的值(<v的第一个节点的值),不存在前驱返回负无穷
int GetPrev(int id, int v) {
int res = -INF;
while(id) {
if(val[id] < v)
res = val[id], id = rs;
else
id = ls;
}
return res;
}
//查询v的后继的值(>v的第一个节点的值),不存在后继返回无穷
int GetNext(int id, int v) {
int res = INF;
while(id) {
if(val[id] > v)
res = val[id], id = ls;
else
id = rs;
}
return res;
}
//查询小于等于v的数的和
ll GetSumValue(int id, int v) {
ll res = 0;
while(id) {
if(val[id] > v)
id = ls;
else if(val[id] == v) {
res += sum[ls] + 1ll * cnt[id] * val[id];
break;
} else {
res += sum[ls] + 1ll * cnt[id] * val[id];
id = rs;
}
}
return res;
}
//查询前rk个数的和,rk必须是正整数
ll GetSumRank(int id, int rk) {
ll res = 0;
while(id) {
if(siz[ls] >= rk)
id = ls;
else if(siz[ls] + cnt[id] >= rk) {
res += sum[ls] + 1ll * (rk - siz[ls]) * val[id];
break;
} else {
res += sum[ls] + 1ll * cnt[id] * val[id];
rk -= siz[ls] + cnt[id];
id = rs;
}
}
return res;
}
封装了val的,速度略微下降,因为是键值对所以求和类的函数变得没什么意义。
struct TreapNode {
int val1, val2;
TreapNode() {}
TreapNode(int val1, int val2): val1(val1), val2(val2) {}
bool operator<(const TreapNode& tn)const {
return val1 < tn.val1;
}
bool operator<=(const TreapNode& tn)const {
return val1 <= tn.val1;
}
bool operator==(const TreapNode& tn)const {
return val1 == tn.val1;
}
bool operator>=(const TreapNode& tn)const {
return val1 >= tn.val1;
}
bool operator>(const TreapNode& tn)const {
return val1 > tn.val1;
}
} TNINF(INF, INF);
/*#define TreapNode pii
TreapNode TNINF(INF, INF);*/
struct Treap {
#define ls ch[id][0]
#define rs ch[id][1]
static const int MAXN = 200000;
int ch[MAXN + 5][2], dat[MAXN + 5];
TreapNode val[MAXN + 5];
int cnt[MAXN + 5];
int siz[MAXN + 5];
int tot, root;
void Init() {
tot = 0;
root = 0;
}
int NewNode(TreapNode v, int num) {
int id = ++tot;
ls = rs = 0;
dat[id] = rand();
val[id] = v;
cnt[id] = num;
siz[id] = num;
return id;
}
void PushUp(int id) {
siz[id] = siz[ls] + siz[rs] + cnt[id];
}
void Rotate(int &id, int d) {
int temp = ch[id][d ^ 1];
ch[id][d ^ 1] = ch[temp][d];
ch[temp][d] = id;
id = temp;
PushUp(ch[id][d]);
PushUp(id);
}
//插入num个v
void _Insert(int &id, TreapNode v, int num) {
if(!id)
id = NewNode(v, num);
else {
if(v == val[id])
cnt[id] += num;
else {
int d = val[id] > v ? 0 : 1;
_Insert(ch[id][d], v, num);
if(dat[id] < dat[ch[id][d]])
Rotate(id, d ^ 1);
}
PushUp(id);
}
}
//删除至多num个v
void _Remove(int &id, TreapNode v, int num) {
if(!id)
return;
else {
if(v == val[id]) {
if(cnt[id] > num) {
cnt[id] -= num;
PushUp(id);
} else if(ls || rs) {
if(!rs || dat[ls] > dat[rs])
Rotate(id, 1), _Remove(rs, v, num);
else
Rotate(id, 0), _Remove(ls, v, num);
PushUp(id);
} else
id = 0;
} else {
val[id] > v ? _Remove(ls, v, num) : _Remove(rs, v, num);
PushUp(id);
}
}
}
//查询v的排名,排名定义为<v的数的个数+1。
int _GetRank(int id, TreapNode v) {
int res = 1;
while(id) {
if(val[id] > v)
id = ls;
else if(val[id] == v) {
res += siz[ls];
break;
} else {
res += siz[ls] + cnt[id];
id = rs;
}
}
return res;
}
//查询排名为rk的数,rk必须是正整数,rk过大返回无穷
TreapNode _GetValue(int id, int rk) {
TreapNode res = TNINF;
while(id) {
if(siz[ls] >= rk)
id = ls;
else if(siz[ls] + cnt[id] >= rk) {
res = val[id];
break;
} else {
rk -= siz[ls] + cnt[id];
id = rs;
}
}
return res;
}
int Size() {
return siz[root];
}
void Insert(TreapNode v, int num = 1) {
_Insert(root, v, num);
}
void Remove(TreapNode v, int num = INF) {
_Remove(root, v, num);
}
int GetRank(TreapNode v) {
return _GetRank(root, v);
}
TreapNode GetValue(int rk) {
return _GetValue(root, rk);
}
#undef ls
#undef rs
}
以上是关于模板 - 数据结构 - Treap的主要内容,如果未能解决你的问题,请参考以下文章