神炎皇(模拟测试67)(数论)

Posted toot-wjh

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了神炎皇(模拟测试67)(数论)相关的知识,希望对你有一定的参考价值。

神炎皇:

  题意:

    对于一个整数对$(a,b)$,若满足$a+b<=n$且$a+b$是$a*b$的因子,则成为神奇的数对。请问这样的数对共有多少个?($N<=10^{14}$)

  题解:

    已知$a+b<=n\ (a+b)|ab$。

    设$d=gcd(a,b),x=a/d,y=b/d$。

    上式为$(x+y)*d<=n(1)\ (x+y)|x*y*d(2)$。

    因为$gcd(x+y,x)=gcd(x+y,y)=gcd(x,y)=1$。

    (2)式可化减为$(x+y)|d$。

    又由(1)式得$(x+y)<=sqrt{n}$。

    设$k=x+y,d=z*k$,所以$z*k^2<=n$,那么合法的$d$的个数为$lfloor frac{n}{k^2} floor$。

    而对于每一个$d$,都有$varphi{k}$个$x$满足条件。

    所以最后答案为$sumlimits_{i=1}^{sqrt{n}} varphi(i) * lfloor frac{n}{k^2} floor$。

  code:

 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
#define R register
#define ll long long
#define int long long
inline int read()
{
	int aa=0;char cc=getchar();
	while(cc<‘0‘||cc>‘9‘)cc=getchar();
	while(cc<=‘9‘&&cc>=‘0‘)
		aa=(aa<<3)+(aa<<1)+(cc^48),cc=getchar();
	return aa;
}
const int N=1e7+7,M=1e6;
int n,ans;bool mark[N];int tot,phi[N],prime[M];
void getphi(const int lim)
{
	for(R int i=2;i<=lim;++i){
		if(!mark[i])prime[++tot]=i,phi[i]=i-1;
		for(R int j=1;j<=tot;++j){
			if(i*prime[j]>lim)break;
			mark[i*prime[j]]=1;
			if(i%prime[j]==0){
				phi[i*prime[j]]=phi[i]*prime[j];break;
			}
			else phi[i*prime[j]]=phi[i]*(prime[j]-1);
		}
	}
}
signed main()
{
	//freopen("uria.in","r",stdin);
	//freopen("uria.out","w",stdout);
	n=read();
	const int lim=sqrt(n);
	getphi(lim+2);
	for(R int i=1;i<=lim;++i)
		ans+=phi[i]*(n/(i*i));
	printf("%lld",ans);
	return 0;
}
/*
21 
*/

 

 

 

以上是关于神炎皇(模拟测试67)(数论)的主要内容,如果未能解决你的问题,请参考以下文章

NOIP2017提高组模拟12.10神炎皇

神炎皇 数学

csp-s模拟测试70

安卓模拟器夜神连接hbuilder真机测试

夜神模拟器会被检测出来吗

专题数论