15cifar10
Posted pengzhonglian
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了15cifar10相关的知识,希望对你有一定的参考价值。
1 import tensorflow as tf 2 from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics 3 from tensorflow import keras 4 import os 5 6 os.environ[‘TF_CPP_MIN_LOG_LEVEL‘] = ‘2‘ 7 8 9 def preprocess(x, y): 10 # [0~255] => [-1~1] 11 x = 2 * tf.cast(x, dtype=tf.float32) / 255. - 1. 12 y = tf.cast(y, dtype=tf.int32) 13 return x,y 14 15 16 batchsz = 128 17 # [50k, 32, 32, 3], [10k, 1] 18 (x, y), (x_val, y_val) = datasets.cifar10.load_data() 19 y = tf.squeeze(y) 20 y_val = tf.squeeze(y_val) 21 y = tf.one_hot(y, depth=10) # [50k, 10] 22 y_val = tf.one_hot(y_val, depth=10) # [10k, 10] 23 print(‘datasets:‘, x.shape, y.shape, x_val.shape, y_val.shape, x.min(), x.max()) 24 25 26 train_db = tf.data.Dataset.from_tensor_slices((x,y)) 27 train_db = train_db.map(preprocess).shuffle(10000).batch(batchsz) 28 test_db = tf.data.Dataset.from_tensor_slices((x_val, y_val)) 29 test_db = test_db.map(preprocess).batch(batchsz) 30 31 32 sample = next(iter(train_db)) 33 print(‘batch:‘, sample[0].shape, sample[1].shape) 34 35 36 class MyDense(layers.Layer): 37 # to replace standard layers.Dense() 38 def __init__(self, inp_dim, outp_dim): 39 super(MyDense, self).__init__() 40 41 self.kernel = self.add_variable(‘w‘, [inp_dim, outp_dim]) 42 # self.bias = self.add_variable(‘b‘, [outp_dim]) 43 44 def call(self, inputs, training=None): 45 46 x = inputs @ self.kernel 47 return x 48 49 class MyNetwork(keras.Model): 50 51 def __init__(self): 52 super(MyNetwork, self).__init__() 53 54 self.fc1 = MyDense(32*32*3, 256) 55 self.fc2 = MyDense(256, 128) 56 self.fc3 = MyDense(128, 64) 57 self.fc4 = MyDense(64, 32) 58 self.fc5 = MyDense(32, 10) 59 60 61 62 def call(self, inputs, training=None): 63 """ 64 65 :param inputs: [b, 32, 32, 3] 66 :param training: 67 :return: 68 """ 69 x = tf.reshape(inputs, [-1, 32*32*3]) 70 # [b, 32*32*3] => [b, 256] 71 x = self.fc1(x) 72 x = tf.nn.relu(x) 73 # [b, 256] => [b, 128] 74 x = self.fc2(x) 75 x = tf.nn.relu(x) 76 # [b, 128] => [b, 64] 77 x = self.fc3(x) 78 x = tf.nn.relu(x) 79 # [b, 64] => [b, 32] 80 x = self.fc4(x) 81 x = tf.nn.relu(x) 82 # [b, 32] => [b, 10] 83 x = self.fc5(x) 84 85 return x 86 87 88 network = MyNetwork() 89 network.compile(optimizer=optimizers.Adam(lr=1e-3), 90 loss=tf.losses.CategoricalCrossentropy(from_logits=True), 91 metrics=[‘accuracy‘]) 92 network.fit(train_db, epochs=15, validation_data=test_db, validation_freq=1) 93 94 network.evaluate(test_db) 95 network.save_weights(‘ckpt/weights.ckpt‘) 96 del network 97 print(‘saved to ckpt/weights.ckpt‘) 98 99 100 network = MyNetwork() 101 network.compile(optimizer=optimizers.Adam(lr=1e-3), 102 loss=tf.losses.CategoricalCrossentropy(from_logits=True), 103 metrics=[‘accuracy‘]) 104 network.load_weights(‘ckpt/weights.ckpt‘) 105 print(‘loaded weights from file.‘) 106 network.evaluate(test_db)
以上是关于15cifar10的主要内容,如果未能解决你的问题,请参考以下文章