用Spark读取庞大的CSV文件

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了用Spark读取庞大的CSV文件相关的知识,希望对你有一定的参考价值。

我有一个27GB的gz csv文件,我想用Spark来读取,我们最大的节点有30GB的内存,当我试图读取文件时,只有一个执行器在加载数据(我正在监控内存和网络),其他4个执行器都是陈旧的。

当我试图读取文件时,只有一个执行器在加载数据(我正在监控内存和网络),其他4个执行器都是陈旧的。

过了一会儿就因为内存问题而崩溃了。有什么办法可以并行读取这个文件吗?

Dataset<Row> result = sparkSession.read()
                .option("header","true")
                .option("escape", """)
                .option("multiLine","true")
                .format("csv")
                .load("s3a://csv-bucket");

result.repartition(10)

spark_conf:
 spark.executor.memoryOverhead: "512"
 spark.executor.cores: "5"

driver:
  memory: 10G

executor:
  instances: 5
  memory: 30G
答案

当涉及到庞大的数据时,你必须对数据进行重新分区。

在火花中,并行的单位是分区

Dataset<Row> result = sparkSession.read()
                .option("header","true")
                .option("escape", """)
                .option("multiLine","true")
                .format("csv")
                .load("s3a://csv-bucket");



result.repartition(5 * 5 *3) ( number of executors i.e.5 * cores i.e. 5 * replicationfactor i.e. 2-3)  i.e. 25 might be working for you to ensure uniform disribution data.

交叉检查每个分区有多少条记录。 import org.apache.spark.sql.functions.spark_partition_id yourcsvdataframe.groupBy(spark_partition_id).count.show()

例子 :

  val mycsvdata =
    """
      |rank,freq,Infinitiv,Unreg,Trans,"Präsens_ich","Präsens_du","Präsens_er, sie, es","Präteritum_ich","Partizip II","Konjunktiv II_ich","Imperativ Singular","Imperativ Plural",Hilfsverb
      |3,3796784,sein,"","",bin,bist,ist,war,gewesen,"wäre",sei,seid,sein
      |8,1618550,haben,"","",habe,hast,hat,hatte,gehabt,"hätte",habe,habt,haben
      |10,1379496,einen,"","",eine,einst,eint,einte,geeint,einte,eine,eint,haben
      |12,948246,werden,"","",werde,wirst,wird,wurde,geworden,"würde",werde,werdet,sein
    """.stripMargin.lines.toList.toDS
  val csvdf: DataFrame = spark.read.option("header", true)
    .option("header", true)
    .csv(mycsvdata)

  csvdf.show(false)
  println("all the 4 records are in single partition 0 ")

  import org.apache.spark.sql.functions.spark_partition_id
  csvdf.groupBy(spark_partition_id).count.show()

  println( "now divide data... 4 records to 2 per partition")
  csvdf.repartition(2).groupBy(spark_partition_id).count.show()

结果 :

 +----+-------+---------+-----+-----+-----------+----------+-------------------+--------------+-----------+-----------------+------------------+----------------+---------+
|rank|freq   |Infinitiv|Unreg|Trans|Präsens_ich|Präsens_du|Präsens_er, sie, es|Präteritum_ich|Partizip II|Konjunktiv II_ich|Imperativ Singular|Imperativ Plural|Hilfsverb|
+----+-------+---------+-----+-----+-----------+----------+-------------------+--------------+-----------+-----------------+------------------+----------------+---------+
|3   |3796784|sein     |null |null |bin        |bist      |ist                |war           |gewesen    |wäre             |sei               |seid            |sein     |
|8   |1618550|haben    |null |null |habe       |hast      |hat                |hatte         |gehabt     |hätte            |habe              |habt            |haben    |
|10  |1379496|einen    |null |null |eine       |einst     |eint               |einte         |geeint     |einte            |eine              |eint            |haben    |
|12  |948246 |werden   |null |null |werde      |wirst     |wird               |wurde         |geworden   |würde            |werde             |werdet          |sein     |
+----+-------+---------+-----+-----+-----------+----------+-------------------+--------------+-----------+-----------------+------------------+----------------+---------+

all the 4 records are in single partition 0 
+--------------------+-----+
|SPARK_PARTITION_ID()|count|
+--------------------+-----+
|                   0|    4|
+--------------------+-----+

now divide data... 4 records to 2 per partition
+--------------------+-----+
|SPARK_PARTITION_ID()|count|
+--------------------+-----+
|                   1|    2|
|                   0|    2|
+--------------------+-----+

以上是关于用Spark读取庞大的CSV文件的主要内容,如果未能解决你的问题,请参考以下文章

Spark 无法读取 CSV 文件并转换为数据集

python 读取多个csv文件中某一列,并生成一个新csv文件

Spark 使用 Data Frame 读取 CSV 文件并从 PostgreSQL DB 查询

Spark读取一个文件夹中的所有csv文件

使用 spark-csv 在 zeppelin 中读取 csv 文件

在 Spark 中读取不同的 csv 文件