用numpy广播计算距离矩阵的方法
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了用numpy广播计算距离矩阵的方法相关的知识,希望对你有一定的参考价值。
我想计算(x,y,z)坐标的欧几里得距离矩阵.我找到了计算(x,y)坐标的欧几里得距离矩阵的方法。
def euclidian_dist(x,y):
diff = np.expand_dims(x, axis=1) - np.expand_dims(y, axis=0)
distance_matrix = np.sqrt(np.sum(diff ** 2, axis=-1))
return distance_matrix
if __name__=="__main__":
#[[x1,y1],[x2,y2],...,[xn,yn]]
p = np.array([[0.0, 0.0],[1., 0],[1, 1],[0, 1]])
q = np.array([[0., 0],[1., 0],[0.3, 0.4],[0.7, 0.6]])
euclidian_dist(p,q)
ans: array([[0. , 1. , 0.5 , 0.92195445],
[1. , 0. , 0.80622577, 0.67082039],
[1.41421356, 1. , 0.92195445, 0.5 ],
[1. , 1.41421356, 0.67082039, 0.80622577]])
下一步,我想用x,y,z坐标([[x1,y1,z1],[x2,y2,z2],...,[xn,yn,zn]])
并想得到欧几里得距离矩阵( shape:n✕n)。
如果你知道解决方法,可以告诉我吗?
答案
对3D点使用相同的代码。它工作得很好。
def euclidian_dist(x,y):
diff = np.expand_dims(x, axis=1) - np.expand_dims(y, axis=0)
distance_matrix = np.sqrt(np.sum(diff ** 2, axis=-1))
return distance_matrix
if __name__=="__main__":
#[[x1,y1],[x2,y2],...,[xn,yn]]
p = np.array([[0.0, 0.0, 0.0],[1.,1., 0],[1, 1, 1],[0, 0, 1]])
q = np.array([[0., 0, 0],[1.,1., 0],[0.3,0.3, 0.4],[0.7, 0.6, 0.6]])
print(euclidian_dist(p,q))
输出:
[[0. 1.41421356 0.58309519 1.1 ]
[1.41421356 0. 1.06770783 0.78102497]
[1.73205081 1. 1.15758369 0.64031242]
[1. 1.73205081 0.73484692 1.00498756]]
以上是关于用numpy广播计算距离矩阵的方法的主要内容,如果未能解决你的问题,请参考以下文章
为啥 np.hypot 和 np.subtract.outer 与香草广播相比非常快?使用 Numba 并行加速 numpy 进行距离矩阵计算