机器学习_02_决策树

Posted jly1

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习_02_决策树相关的知识,希望对你有一定的参考价值。

决策树也是一种基础的机器学习模型

比如预测今天小明是否出去打球, 那么我们知道一些特征, 通过对特征的划分,我们可以做出一颗树, 就是决策树, 其实决策树在管理学也用的很多, 主要是对每种情况给出一个概率,然后判断情况的优劣, 这样我们可以通过这棵树来判断当前的情况
技术图片

  • 如何判断哪个特征进行划分呢, 我们用熵来划分,通过信息增益我们可以选出最优的特征来进行划分.
    技术图片
    技术图片
  • 熵是不确定性的度量, 熵越大, 不确定性越大, 否则越小
  • ID3算法
  1. 对当前的样本集合, 计算所有的信息增益
  2. 选择信息增益最大的属性作为测试属性
  3. 不断地往下分, 知道到达算法停止条件
  • 避免过拟合
    没必要分裂的不要分裂
    剪枝
  • 不是对信息增益求差值, 而是求比例大小
    技术图片
  • 其他解决过拟合的算法
    技术图片
  • 决策树的优劣
    技术图片
  • 决策树的集成算法
    主要有三种
    一种是Bagging , 对样本进行选择 , 构建不同的投票箱, 然后进行判断
    技术图片
    第二种是 Random Forest, 先对样本进行选择, 然后再随机挑选特征进行选择
    技术图片
    第三种是 Boosting , 通过对样本进行更新, 然后在投票
    技术图片
  • Boost 算法
  • AdaBoost
    技术图片
    技术图片
    技术图片
    技术图片
    技术图片
    技术图片
  • GBDT
    技术图片
    技术图片
  • XGBoost
    技术图片
    技术图片

以上是关于机器学习_02_决策树的主要内容,如果未能解决你的问题,请参考以下文章

决策树专题_以python为工具Python机器学习系列

机器学习_决策树

机器学习_决策树Python代码详解

决策树

机器学习实践之决策树算法学习

机器学习---算法---决策树