LinearLayout源码解析
Posted alsd
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LinearLayout源码解析相关的知识,希望对你有一定的参考价值。
为什么学习
自从学了android自定义控件的一些知识,总是处于似懂非懂状态,说都说了上来,自己在项目里封装了一些自定义控件,但是还是缺乏一个很直观的了解。所以去了解学习下Android是如何封装控件的,就从简单的入手,分析下LinearLayout是如何实现的
什么是LinearLayout
作为最基础的布局,所以从事过Android开发的同学都应该非常了解
中文解释应该叫做线性布局,相比如RelativeLayout,LinearLayout更简单,在没有weight的情况也每次只要测量一次就够,而RelativeLayout每次都需要测量两次
一些LinearLayout需要注意的属性
orientation 纵向排布或者水平排布
weight 权重,用于分配LinearLayout剩下的空间(会详细介绍)
measureWithLargestChild 这个属性不常见,如果赋值为true的话,所有
weight子View都会采用最大View的最小尺寸(为什么Android要设计这个属性,我也不是很理解)
源码分析
一般所有控件类的源码,都会从 measure, layout和draw3个方法入手,查看他们的回调函数onMeasure, onLayout和onDraw
只要明白这3个流程,一般控件的整个实现也就明白了
LinearLayout作为一个ViewGroup的子类,主要作为一个布局容器出现,所以我们需要重点查看写onMeasure方法
@Override protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) { if (mOrientation == VERTICAL) { measureVertical(widthMeasureSpec, heightMeasureSpec); } else { measureHorizontal(widthMeasureSpec, heightMeasureSpec); } }
从上面代码看到,LinearLayout的onMeasure方法实现非常简洁,根据布局方向分为measureVertical和measureHorizontal。下后面的onLayout和onDraw也是如此。鉴于内部实现基本一模一样,我在这只分析纵向的实现
/** * Measures the children when the orientation of this LinearLayout is set * to {@link #VERTICAL}. * * @param widthMeasureSpec Horizontal space requirements as imposed by the parent. * @param heightMeasureSpec Vertical space requirements as imposed by the parent. * * @see #getOrientation() * @see #setOrientation(int) * @see #onMeasure(int, int) */ void measureVertical(int widthMeasureSpec, int heightMeasureSpec) { mTotalLength = 0; int maxWidth = 0; int childState = 0; int alternativeMaxWidth = 0; int weightedMaxWidth = 0; boolean allFillParent = true; float totalWeight = 0; final int count = getVirtualChildCount(); final int widthMode = MeasureSpec.getMode(widthMeasureSpec); final int heightMode = MeasureSpec.getMode(heightMeasureSpec); boolean matchWidth = false; boolean skippedMeasure = false; final int baselineChildIndex = mBaselineAlignedChildIndex; final boolean useLargestChild = mUseLargestChild; int largestChildHeight = Integer.MIN_VALUE; // See how tall everyone is. Also remember max width. for (int i = 0; i < count; ++i) { final View child = getVirtualChildAt(i); if (child == null) { mTotalLength += measureNullChild(i); continue; } if (child.getVisibility() == View.GONE) { i += getChildrenSkipCount(child, i); continue; } if (hasDividerBeforeChildAt(i)) { mTotalLength += mDividerHeight; } LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams) child.getLayoutParams(); totalWeight += lp.weight; if (heightMode == MeasureSpec.EXACTLY && lp.height == 0 && lp.weight > 0) { // Optimization: don‘t bother measuring children who are going to use // leftover space. These views will get measured again down below if // there is any leftover space. final int totalLength = mTotalLength; mTotalLength = Math.max(totalLength, totalLength + lp.topMargin + lp.bottomMargin); skippedMeasure = true; } else { int oldHeight = Integer.MIN_VALUE; if (lp.height == 0 && lp.weight > 0) { // heightMode is either UNSPECIFIED or AT_MOST, and this // child wanted to stretch to fill available space. // Translate that to WRAP_CONTENT so that it does not end up // with a height of 0 oldHeight = 0; lp.height = LayoutParams.WRAP_CONTENT; } // Determine how big this child would like to be. If this or // previous children have given a weight, then we allow it to // use all available space (and we will shrink things later // if needed). measureChildBeforeLayout( child, i, widthMeasureSpec, 0, heightMeasureSpec, totalWeight == 0 ? mTotalLength : 0); if (oldHeight != Integer.MIN_VALUE) { lp.height = oldHeight; } final int childHeight = child.getMeasuredHeight(); final int totalLength = mTotalLength; mTotalLength = Math.max(totalLength, totalLength + childHeight + lp.topMargin + lp.bottomMargin + getNextLocationOffset(child)); if (useLargestChild) { largestChildHeight = Math.max(childHeight, largestChildHeight); } } /** * If applicable, compute the additional offset to the child‘s baseline * we‘ll need later when asked {@link #getBaseline}. */ if ((baselineChildIndex >= 0) && (baselineChildIndex == i + 1)) { mBaselineChildTop = mTotalLength; } // if we are trying to use a child index for our baseline, the above // book keeping only works if there are no children above it with // weight. fail fast to aid the developer. if (i < baselineChildIndex && lp.weight > 0) { throw new RuntimeException("A child of LinearLayout with index " + "less than mBaselineAlignedChildIndex has weight > 0, which " + "won‘t work. Either remove the weight, or don‘t set " + "mBaselineAlignedChildIndex."); } boolean matchWidthLocally = false; if (widthMode != MeasureSpec.EXACTLY && lp.width == LayoutParams.MATCH_PARENT) { // The width of the linear layout will scale, and at least one // child said it wanted to match our width. Set a flag // indicating that we need to remeasure at least that view when // we know our width. matchWidth = true; matchWidthLocally = true; } final int margin = lp.leftMargin + lp.rightMargin; final int measuredWidth = child.getMeasuredWidth() + margin; maxWidth = Math.max(maxWidth, measuredWidth); childState = combineMeasuredStates(childState, child.getMeasuredState()); allFillParent = allFillParent && lp.width == LayoutParams.MATCH_PARENT; if (lp.weight > 0) { /* * Widths of weighted Views are bogus if we end up * remeasuring, so keep them separate. */ weightedMaxWidth = Math.max(weightedMaxWidth, matchWidthLocally ? margin : measuredWidth); } else { alternativeMaxWidth = Math.max(alternativeMaxWidth, matchWidthLocally ? margin : measuredWidth); } i += getChildrenSkipCount(child, i); } if (mTotalLength > 0 && hasDividerBeforeChildAt(count)) { mTotalLength += mDividerHeight; } if (useLargestChild && (heightMode == MeasureSpec.AT_MOST || heightMode == MeasureSpec.UNSPECIFIED)) { mTotalLength = 0; for (int i = 0; i < count; ++i) { final View child = getVirtualChildAt(i); if (child == null) { mTotalLength += measureNullChild(i); continue; } if (child.getVisibility() == GONE) { i += getChildrenSkipCount(child, i); continue; } final LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams) child.getLayoutParams(); // Account for negative margins final int totalLength = mTotalLength; mTotalLength = Math.max(totalLength, totalLength + largestChildHeight + lp.topMargin + lp.bottomMargin + getNextLocationOffset(child)); } } // Add in our padding mTotalLength += mPaddingTop + mPaddingBottom; int heightSize = mTotalLength; // Check against our minimum height heightSize = Math.max(heightSize, getSuggestedMinimumHeight()); // Reconcile our calculated size with the heightMeasureSpec int heightSizeAndState = resolveSizeAndState(heightSize, heightMeasureSpec, 0); heightSize = heightSizeAndState & MEASURED_SIZE_MASK; // Either expand children with weight to take up available space or // shrink them if they extend beyond our current bounds. If we skipped // measurement on any children, we need to measure them now. int delta = heightSize - mTotalLength; if (skippedMeasure || delta != 0 && totalWeight > 0.0f) { float weightSum = mWeightSum > 0.0f ? mWeightSum : totalWeight; mTotalLength = 0; for (int i = 0; i < count; ++i) { final View child = getVirtualChildAt(i); if (child.getVisibility() == View.GONE) { continue; } LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams) child.getLayoutParams(); float childExtra = lp.weight; if (childExtra > 0) { // Child said it could absorb extra space -- give him his share int share = (int) (childExtra * delta / weightSum); weightSum -= childExtra; delta -= share; final int childWidthMeasureSpec = getChildMeasureSpec(widthMeasureSpec, mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin, lp.width); // TODO: Use a field like lp.isMeasured to figure out if this // child has been previously measured if ((lp.height != 0) || (heightMode != MeasureSpec.EXACTLY)) { // child was measured once already above... // base new measurement on stored values int childHeight = child.getMeasuredHeight() + share; if (childHeight < 0) { childHeight = 0; } child.measure(childWidthMeasureSpec, MeasureSpec.makeMeasureSpec(childHeight, MeasureSpec.EXACTLY)); } else { // child was skipped in the loop above. // Measure for this first time here child.measure(childWidthMeasureSpec, MeasureSpec.makeMeasureSpec(share > 0 ? share : 0, MeasureSpec.EXACTLY)); } // Child may now not fit in vertical dimension. childState = combineMeasuredStates(childState, child.getMeasuredState() & (MEASURED_STATE_MASK>>MEASURED_HEIGHT_STATE_SHIFT)); } final int margin = lp.leftMargin + lp.rightMargin; final int measuredWidth = child.getMeasuredWidth() + margin; maxWidth = Math.max(maxWidth, measuredWidth); boolean matchWidthLocally = widthMode != MeasureSpec.EXACTLY && lp.width == LayoutParams.MATCH_PARENT; alternativeMaxWidth = Math.max(alternativeMaxWidth, matchWidthLocally ? margin : measuredWidth); allFillParent = allFillParent && lp.width == LayoutParams.MATCH_PARENT; final int totalLength = mTotalLength; mTotalLength = Math.max(totalLength, totalLength + child.getMeasuredHeight() + lp.topMargin + lp.bottomMargin + getNextLocationOffset(child)); } // Add in our padding mTotalLength += mPaddingTop + mPaddingBottom; // TODO: Should we recompute the heightSpec based on the new total length? } else { alternativeMaxWidth = Math.max(alternativeMaxWidth, weightedMaxWidth); // We have no limit, so make all weighted views as tall as the largest child. // Children will have already been measured once. if (useLargestChild && heightMode != MeasureSpec.EXACTLY) { for (int i = 0; i < count; i++) { final View child = getVirtualChildAt(i); if (child == null || child.getVisibility() == View.GONE) { continue; } final LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams) child.getLayoutParams(); float childExtra = lp.weight; if (childExtra > 0) { child.measure( MeasureSpec.makeMeasureSpec(child.getMeasuredWidth(), MeasureSpec.EXACTLY), MeasureSpec.makeMeasureSpec(largestChildHeight, MeasureSpec.EXACTLY)); } } } } if (!allFillParent && widthMode != MeasureSpec.EXACTLY) { maxWidth = alternativeMaxWidth; } maxWidth += mPaddingLeft + mPaddingRight; // Check against our minimum width maxWidth = Math.max(maxWidth, getSuggestedMinimumWidth()); setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState), heightSizeAndState); if (matchWidth) { forceUniformWidth(count, heightMeasureSpec); } }
整个方法代码不长,就300行左右,但是思路十分清晰 我们根据流程,一步一步来看
首先是初始化了一堆变量
我们挑几个重要的看
//记录内部使用的高度,别被字面意思误导了以为是LinearLayout的高度 mTotalLength = 0; //权重值的总和 float totalWeight = 0; //子view的数量, final int count = getVirtualChildCount(); //其实调用的都是getChildCount(),外面套一层getVirtualChildCount() //可能是为了让读者更好的理解 int getVirtualChildCount() { return getChildCount(); } //LinearLayout的高度模式和宽度模式 //如果这部分知识不理解的需要去看下Measure的过程 final int widthMode = MeasureSpec.getMode(widthMeasureSpec); final int heightMode=MeasureSpec.getMode(heightMeasureSpec);
初始化变量之后,就开始遍历所有子View了,然后对子View进行测量
//首先把子View取出來 final View child = getVirtualChildAt(i); //如果子View是null就继续测量下一个子View if (child == null) { mTotalLength += measureNullChild(i); continue; } //如果子View是GONE的也不算在总高度里面,这里也能看出GONE和INVISIBLE的区别 if (child.getVisibility() == View.GONE) { i += getChildrenSkipCount(child, i); continue; } //如果有分割线,就把分割线高度加上 if (hasDividerBeforeChildAt(i)) { mTotalLength += mDividerHeight; }
然后
//有时候我们在代码里面通过Inflater服务,动态加载一个布局,然后去设置他的LayoutParams,如果不引用父容器的LayoutParams就会报一个强转错误,原因就在这个 父容器在add,measure的时候都会把子View的LayoutParams强转成自己的类型 LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams) child.getLayoutParams(); //计入总权重 totalWeight += lp.weight; //这里就值得注意下了如果当前的LinearLayout是EXACTLY模式,且子view的高度为0,且权重大于0 //这个子view只有在LinearLayout高度有剩余的时候,才会根据权重的占比去平分剩余空间 //上文说的二次测量也就指的这部分 if (heightMode == MeasureSpec.EXACTLY && lp.height == 0 && lp.weight > 0) { // Optimization: don‘t bother measuring children who are going to use // leftover space. These views will get measured again down below if // there is any leftover space. final int totalLength = mTotalLength; mTotalLength = Math.max(totalLength, totalLength + lp.topMargin + lp.bottomMargin); skippedMeasure = true; }
//如果不是上述的情况 else { int oldHeight = Integer.MIN_VALUE; if (lp.height == 0 && lp.weight > 0) { // heightMode is either UNSPECIFIED or AT_MOST, and this // child wanted to stretch to fill available space. // Translate that to WRAP_CONTENT so that it does not end up // with a height of 0 //这里其实官方的注释讲了也挺清楚的,到了这步,当前的LinearLayout的模式 //肯定是UNSPECIFIED或者MOST,因为EXACTLY模式会进入上一个判断 //然后把子View的高度赋值成-1(WRAP_CONTENT) oldHeight = 0; lp.height = LayoutParams.WRAP_CONTENT; } // Determine how big this child would like to be. If this or // previous children have given a weight, then we allow it to // use all available space (and we will shrink things later // if needed). //这里就开始测算子View了 //如果当前的LinearLayout不是EXACTLY模式,且子View的weight大于0,优先会把当前LinearLayout的全部可用高度用于子View测量 measureChildBeforeLayout( child, i, widthMeasureSpec, 0, heightMeasureSpec, totalWeight == 0 ? mTotalLength : 0); // 重置子控件高度,然后进行精确赋值 if (oldHeight != Integer.MIN_VALUE) { lp.height = oldHeight; } final int childHeight = child.getMeasuredHeight(); final int totalLength = mTotalLength; //加上子View的margin值 mTotalLength = Math.max(totalLength, totalLength+childHeight + lp.topMargin +lp.bottomMargin + getNextLocationOffset(child)); if (useLargestChild) { largestChildHeight = Math.max(childHeight, largestChildHeight); } }
//totalWeight == 0 ? mTotalLength : 0 //这里的totalHeight就是有这个决定的 //如果为0,就会把所有可用高度给子View void measureChildBeforeLayout(View child, int childIndex, int widthMeasureSpec, int totalWidth, int heightMeasureSpec,int totalHeight) { measureChildWithMargins(child, widthMeasureSpec, totalWidth, heightMeasureSpec, totalHeight); } //接着看这个方法是如何实现的 protected void measureChildWithMargins(View child, int parentWidthMeasureSpec, int widthUsed, int parentHeightMeasureSpec, int heightUsed) { final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams(); //这个就和普通的ViewGroup实现方法一样了,根据子View的LayoutParams和父容器的MeasureSpec共同决定了子View的大小 //getChildMeasureSpec是属于ViewGroup的方法 final int childWidthMeasureSpec = getChildMeasureSpec( parentWidthMeasureSpec, mPaddingLeft + mPaddingRight + lp.leftMargin + final int childHeightMeasureSpec getChildMeasureSpec( parentHeightMeasureSpec, mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin + heightUsed, lp.height); child.measure(childWidthMeasureSpec, childHeightMeasureSpec); }
//在这两段代码之间还有些杂七杂八的处理,如果读者有兴趣可以自己阅读分析下 //当测量完子View的大小后,总高度会再加上padding的高度 // Add in our padding mTotalLength += mPaddingTop + mPaddingBottom; int heightSize = mTotalLength; // Check against our minimum height //如果设置了minimumheight属性,会根据当前使用高度和最小高度进行比较 //然后取两者中大的值 heightSize = Math.max(heightSize, getSuggestedMinimumHeight()); // Reconcile our calculated size with the heightMeasureSpec int heightSizeAndState = resolveSizeAndState(heightSize, heightMeasureSpec, 0); heightSize = heightSizeAndState & MEASURED_SIZE_MASK; // Either expand children with weight to take up available space or // shrink them if they extend beyond our current bounds. If we skipped // measurement on any children, we need to measure them now. //到了这里,会再对带weight属性的子View进行一次测绘 //首先计算属于高度 int delta = heightSize - mTotalLength; if (skippedMeasure || delta != 0 && totalWeight > 0.0f) { //如果设置了weightSum就会使用你设置的weightSum,否则采用当前所有子View的权重和。所以如果要手动设置weightSum的时候,千万别计算错误哦 float weightSum = mWeightSum > 0.0f ? mWeightSum : totalWeight; mTotalLength = 0; //这里的代码就和第一次测量很像了 for (int i = 0; i < count; ++i) { final View child = getVirtualChildAt(i); if (child.getVisibility() == View.GONE) { continue; } LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams) child.getLayoutParams(); float childExtra = lp.weight; if (childExtra > 0) { // Child said it could absorb extra space -- give him his share //子控件的weight占比*剩余高度 int share = (int) (childExtra * delta / weightSum); weightSum -= childExtra; //剩余高度减去分配出去的高度 delta -= share; final int childWidthMeasureSpec = getChildMeasureSpec(widthMeasureSpec, mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin, lp.width); // TODO: Use a field like lp.isMeasured to figure out if this // child has been previously measured //如果是当前LinearLayout的模式是EXACTLY //那么这个子View是没有被测量过的,就需要测量一次 //如果不是EXACTLY的,在第一次循环里就被测量一些了 if ((lp.height != 0) || (heightMode != MeasureSpec.EXACTLY)) { // child was measured once already above... // base new measurement on stored values //如果是非EXACTLY模式下的子View就再加上 //weight分配占比*剩余高度 int childHeight = child.getMeasuredHeight() + share; if (childHeight < 0) { childHeight = 0; } //重新测量一次,因为高度发生了变化 child.measure(childWidthMeasureSpec, MeasureSpec.makeMeasureSpec(childHeight, MeasureSpec.EXACTLY)); } else { // child was skipped in the loop above. // Measure for this first time here //如果是EXACTLY模式下的 //这里只会把weight占比所拥有的高度分配给你的子View child.measure(childWidthMeasureSpec, MeasureSpec.makeMeasureSpec(share > 0 ? share : 0, MeasureSpec.EXACTLY)); } // Child may now not fit in vertical dimension. childState = combineMeasuredStates(childState, child.getMeasuredState() & (MEASURED_STATE_MASK>>MEASURED_HEIGHT_STATE_SHIFT)); } final int margin = lp.leftMargin + lp.rightMargin; final int measuredWidth = child.getMeasuredWidth() + margin; maxWidth = Math.max(maxWidth, measuredWidth); boolean matchWidthLocally = widthMode != MeasureSpec.EXACTLY && lp.width == LayoutParams.MATCH_PARENT; alternativeMaxWidth = Math.max(alternativeMaxWidth, matchWidthLocally ? margin : measuredWidth); allFillParent = allFillParent && lp.width == LayoutParams.MATCH_PARENT; final int totalLength = mTotalLength; mTotalLength = Math.max(totalLength, totalLength + child.getMeasuredHeight() + lp.topMargin + lp.bottomMargin + getNextLocationOffset(child)); } // Add in our padding mTotalLength += mPaddingTop + mPaddingBottom; // TODO: Should we recompute the heightSpec based on the new total length? }
上述就是onMeasure的主要分析
注意点
1.会根据当前LinearLayout的模式分成2条支线,如果是EXACTLY模式下的weight不为0,且高度设置为0的子View优先级是最低的。如果LinearLayout剩余空间不足,就会不显示
但是如果是AT_MOST的weight不为0,且高度设置为0就会优先获得高度
2.为LinearLayout动态添加子View的时候,子View的LayoutParams一定要是LinearLayout的内部类(适用于其他ViewGroup子类)
举个例子
所有的源码解析都是我们自己根据代码的推论,配合几个demo跑下会理解了更深
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layout_width="match_parent" android:layout_height="match_parent" android:orientation="vertical"> <TextView android:layout_width="match_parent" android:layout_height="300dp" android:layout_weight="2" android:background="@android:color/holo_orange_dark" /> <TextView android:layout_width="match_parent" android:layout_height="fill_parent" android:background="@android:color/holo_blue_dark" /> </LinearLayout>
在分析之前大伙儿先预测下结果,思索下再往下看
假设我们的屏幕是1000dp的高度
父容器LinearLayout是EXACTLY模式,但是TextView1本身的height是300dp,所以会进入第一次测量
TextView1 在第一次测算时拿到了300dp的高度
然后TextView因为是match,所以会拿到1000dp的高度
然后由于有weight的子view,所以进入第二次测量
int delta = heightSize - mTotalLength;
delta = 1000 - 1300; // 结果是-300
int share = (int) (childExtra * delta / weightSum);
share = 2.0 * -300 / 2.0 //share的结果也是-300
MeasureSpec.makeMeasureSpec(share > 0 ? share : 0,
MeasureSpec.EXACTL);
所以最后TextView1的高度是0.不会显示在屏幕上,屏幕上应该被Textview2充满。
不信的话,大家可以试一下
以上是关于LinearLayout源码解析的主要内容,如果未能解决你的问题,请参考以下文章
使用 LinearLayout 代替 FrameLayout 可以吗?
ClassCastException LinearLayout LayoutParams