Lc18-四数之和
Posted xiaoshahai
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Lc18-四数之和相关的知识,希望对你有一定的参考价值。
import java.util.ArrayList; import java.util.List; /** * Given an array nums of n integers and an integer target, are there elements * a, b, c, and d in nums such that a + b + c + d = target? Find all unique * quadruplets in the array which gives the sum of target. * * Note: * * The solution set must not contain duplicate quadruplets. * * Example: * * Given array nums = [1, 0, -1, 0, -2, 2], and target = 0. * * A solution set is: [ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2] ] * * 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/4sum * 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 * */ public class Lc18 { public static List<List<Integer>> fourSum(int[] nums, int target) { List<List<Integer>> res = new ArrayList<>(); if (nums.length < 4) { return res; } // 排序 shellSort(nums); for (int i = 0; i < nums.length - 3; i++) { // 减少循环 // if (nums[i] > target) { // break; // } for (int j = i + 1; j < nums.length - 2; j++) { for (int left = j + 1, right = nums.length - 1; left < nums.length && right >= 0 && left < right;) { // 减少循环 if (nums[i] + nums[j] + nums[left] + nums[right] > target) { right--; } else if (nums[i] + nums[j] + nums[left] + nums[right] < target) { left++; } else { List<Integer> tempResList = new ArrayList<>(); tempResList.add(nums[i]); tempResList.add(nums[j]); tempResList.add(nums[left]); tempResList.add(nums[right]); left++; if (!res.contains(tempResList)) { res.add(tempResList); } } } } } return res; } // 希尔排序 private static void shellSort(int[] nums) { for (int gap = nums.length / 2; gap > 0; gap /= 2) { for (int i = gap; i < nums.length; i++) { for (int j = i; j >= gap && nums[j - gap] > nums[j]; j -= gap) { int temp = nums[j]; nums[j] = nums[j - gap]; nums[j - gap] = temp; } } } } public static void main(String[] args) { int nums[] = {1,-2,-5,-4,-3,3,3,5}; int target = -11; List<List<Integer>> res = fourSum(nums, target); System.out.println(res); } }
以上是关于Lc18-四数之和的主要内容,如果未能解决你的问题,请参考以下文章
代码随想录算法训练营第7天 | ● 454.四数相加II ● 383. 赎金信 ● 15. 三数之和 ● 18. 四数之和 ● 总结