pandas 数据可视化之折线图
Posted sunshinekimi
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pandas 数据可视化之折线图相关的知识,希望对你有一定的参考价值。
官网地址:https://openpyxl.readthedocs.io/en/stable/charts/line.html#id1
openpyxl+pandas
# coding=utf-8 import pandas as pd import time from openpyxl import Workbook from openpyxl.chart import ( LineChart, Reference, ) from openpyxl.chart.axis import DateAxis def cpu_info(csv_path="./datas-permon/CPU_20200111005156.csv"): df = pd.read_csv(csv_path) #dtype={‘timeStamp‘:str} df[‘timeStamp‘] = df[‘timeStamp‘].apply(lambda x:time.strftime(‘%Y%m%d%H%M%S‘ ,time.localtime(int(str(x)[:10])))) user=df.loc[df.label=="192.168.110.151 CPU user"][["label","timeStamp","elapsed"]] iowait=df.loc[df.label=="192.168.110.151 CPU iowait"][["label","timeStamp","elapsed"]] idle=df.loc[df.label=="192.168.110.151 CPU idle"][["label","timeStamp","elapsed"]] it=df["timeStamp"].drop_duplicates().values.tolist() t=[ str(i) for i in it] u=user["elapsed"].values.tolist() io=iowait["elapsed"].values.tolist() idl=idle["elapsed"].values.tolist() rows=list(zip(t,u,io,idl)) rows.insert(0,["timeStamp","user","iowait","idle"]) return rows def mem_info(csv_path="./datas-permon/Meminfo_20200111005156.csv"): df=pd.read_csv(csv_path) df[‘timeStamp‘] = df[‘timeStamp‘].apply(lambda x:time.strftime(‘%Y%m%d%H%M%S‘ ,time.localtime(int(str(x)[:10])))) total=df.loc[df.label=="192.168.110.151 Memory total"][["label","timeStamp","elapsed"]] used=df.loc[df.label=="192.168.110.151 Memory used"][["label","timeStamp","elapsed"]] free=df.loc[df.label=="192.168.110.151 Memory free"][["label","timeStamp","elapsed"]] tol=total["elapsed"]/1024/1024/1024 us=used["elapsed"]/1024/1024/1024 fr=free["elapsed"]/1024/1024/1024 it = df["timeStamp"].drop_duplicates().values.tolist() t = [str(i) for i in it] to=tol.values.tolist() f=fr.values.tolist() u=us.values.tolist() rows=list(zip(t,to,u,f)) rows.insert(0,["timestamp","total","used","free"]) return rows def network_info(csv_path="./datas-permon/NetIO_20200111005156.csv"): df=pd.read_csv(csv_path) df[‘timeStamp‘] = df[‘timeStamp‘].apply(lambda x:time.strftime(‘%Y%m%d%H%M%S‘ ,time.localtime(int(str(x)[:10])))) send=df.loc[df.label=="192.168.110.151 Network I/O bytessent"][["label","timeStamp","elapsed"]] recv=df.loc[df.label=="192.168.110.151 Network I/O bytesrecv"][["label","timeStamp","elapsed"]] elapsed_send=send["elapsed"].values.tolist() elapsed_recv=recv["elapsed"].values.tolist() it = df["timeStamp"].drop_duplicates().values.tolist() t = [str(i) for i in it] rows=list(zip(t,elapsed_send,elapsed_recv)) rows.insert(0,["timeStamp","sentBytes","recvBytes"]) return rows def performance_util(configurations): wb = Workbook() for configuration in configurations: rows = configuration["rows"] sheet = configuration["sheet_name"] label_max=configuration["label"] ws = wb.create_sheet(sheet, index=configuration["index"]) for row in rows: ws.append(row) data = Reference(ws, min_col=2, min_row=1, max_col=label_max, max_row=len(rows)-1) # max_row=7 # Chart with date axis c2 = LineChart() c2.title = "Date Axis" c2.style = 7 c2.y_axis.title = "Size" c2.y_axis.crossAx = 500 c2.x_axis = DateAxis(crossAx=100) c2.x_axis.number_format = ‘%Y%m%d%H%M%S‘ # c2.x_axis.majorTimeUnit = "days" c2.x_axis.title = "Date" c2.height = 16 c2.width = 28 c2.add_data(data, titles_from_data=True) dates = Reference(ws, min_col=1, min_row=2, max_row=len(rows)-1) # max_row=7 c2.set_categories(dates) ws.add_chart(c2, "F1") wb.save("line_permon.xlsx") if __name__ == ‘__main__‘: cpu_dict={"rows":cpu_info(),"sheet_name":"CPU","index":0,"label":4} mem_dict={"rows":mem_info(),"sheet_name":"Mem","index":1,"label":4} network_dict = {"rows": network_info(), "sheet_name": "NetWork", "index": 2,"label":3} performance_util([cpu_dict,mem_dict,network_dict]) # network_info()
效果图:
mem:
network:
以上是关于pandas 数据可视化之折线图的主要内容,如果未能解决你的问题,请参考以下文章