HDU1003 Max Sum 题解 动态规划 最大字段和扩展

Posted quanjun

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU1003 Max Sum 题解 动态规划 最大字段和扩展相关的知识,希望对你有一定的参考价值。

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003

题目大意:
求解一个序列的最大字段和,已经最前面的那个最大子段的起止坐标。

解题思路:
定义状态 (f[i]) 为以 (a[i]) 结尾的最大字段和,则有状态转移方程:

[f[i] = max(0, f[i-1]) + a[i]]

同时定义状态 (s[i]) 表示以 (a[i]) 结尾的最大字段的最左边元素的坐标,则有:

  • (f[i] lt 0) 时,(s[i] = i)
  • (f[i] ge 0) 时,(s[i] = s[i-1])

实现代码如下:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 100010;
int T, n, a[maxn], f[maxn], anss, anst, s[maxn], ans;
int main() {
    scanf("%d", &T);
    for (int cas = 1; cas <= T; cas ++) {
        if (cas > 1) puts("");
        scanf("%d", &n);
        for (int i = 1; i <= n; i ++) scanf("%d", a+i);
        ans = f[1] = a[1];
        anss = anst = s[1] = 1;
        for (int i = 2; i <= n; i ++) {
            if (f[i-1] >= 0) {
                f[i] = f[i-1] + a[i];
                s[i] = s[i-1];
            }
            else {
                f[i] = a[i];
                s[i] = i;
            }
            if (f[i] > ans) {
                ans = f[i];
                anss = s[i];
                anst = i;
            }
        }
        printf("Case %d:
", cas);
        printf("%d %d %d
", ans, anss, anst);
    }
    return 0;
}

以上是关于HDU1003 Max Sum 题解 动态规划 最大字段和扩展的主要内容,如果未能解决你的问题,请参考以下文章

HDU - 1003 Max Sum (思维 || 动态规划)

HDU 1003 Max Sum动态规划求最大子序列和详解

HDU acm 1003 Max Sum || 动态规划求最大子序列和详解

hdu1003 Max Sum最大连续子序列之和

[HDU 1003] Max Sum

HDU1003 Max Sum 解题报告