J - 畅通工程续

Posted studyshare777

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了J - 畅通工程续相关的知识,希望对你有一定的参考价值。

J - 畅通工程续

某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。

Input

本题目包含多组数据,请处理到文件结束。 每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。 接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。 再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。

Output

对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.

Sample Input

3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2

 

Sample Output

2
-1

 

题目描述:

求s到t最短路径。题目给出的道路是双向的。

分析:

n比较小可以用floyd套公式。

开始交了几次答案错误。后面看了题解发现要在储存路径是判断A到B路径是否要比设置的初始路径数值大。应该是x的测试数据会有很大的数。

代码:

#include<iostream> 
#include<algorithm>
#include<string.h>
#define min(x,y) x<y?x:y;
using namespace std;
const int INF=500000000;
int dp[206][206]; 
?
int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
            {
                if(i==j) dp[i][j]=0;
                else dp[i][j]=INF;
            }
        for(int i=0;i<m;i++)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            if(dp[a][b]>c)
            dp[a][b]=dp[b][a]=c;
        }
        int from,to;
        scanf("%d%d",&from,&to);
        for(int k=0;k<n;k++)
            for(int i=0;i<n;i++)
                for(int j=0;j<n;j++)
                dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]);
        printf("%d
",dp[from][to]==INF ? -1:dp[from][to] );
    }
    return 0;
}

 

 

以上是关于J - 畅通工程续的主要内容,如果未能解决你的问题,请参考以下文章

HDU-畅通工程续

HDU 1874 畅通工程续

HDU 1874 畅通工程续

hdu1874畅通工程续(floyd)

hdu 1874 畅通工程续 (dijkstra(不能用于负环))

hdu 1874 畅通工程续(SPFA模板)