numpy中线性代数用法

Posted mengxiaoleng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了numpy中线性代数用法相关的知识,希望对你有一定的参考价值。

numpy中线性代数用法

矩阵乘法

>>> import numpy as np
>>> x=np.array([[1,2,3],[4,5,6]])
>>> y=np.array([[7,8],[-1,7],[8,9]])
>>> x
array([[1, 2, 3],
       [4, 5, 6]])
>>> y
array([[ 7,  8],
       [-1,  7],
       [ 8,  9]])
>>> x.dot(y)
array([[ 29,  49],
       [ 71, 121]])
>>> np.dot(x,y)
array([[ 29,  49],
       [ 71, 121]])

计算点积

>>> a=np.array([[1,2],[3,4]])
>>> b=np.array([[11,12],[12,13]])
>>> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
>>> a=np.array([[1,2],[3,4]])
>>> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6

2y + 5z = -4

2x + 5y - z = 27

矩阵表示
技术图片

>>> import numpy as np
>>> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
>>> ainv = np.linalg.inv(a)#求矩阵的逆
>>> b = np.array([[6],[-4],[27]])
>>> x = np.linalg.solve(a,b)#求解需要A-1和B
>>> x
array([[ 5.],
       [ 3.],
       [-2.]])
>>> 

以上是关于numpy中线性代数用法的主要内容,如果未能解决你的问题,请参考以下文章

numpy的一维线性插值函数

NumPy 基础用法

python numpy svd

numpy学习笔记

如何通过单击片段内的线性布局从片段类开始新活动?下面是我的代码,但这不起作用

学习NumPy全套代码超详细基本操作数据类型数组运算复制和试图索引切片和迭代形状操作通用函数线性代数