AGC31E Snuke the Phantom Thief

Posted autoint

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了AGC31E Snuke the Phantom Thief相关的知识,希望对你有一定的参考价值。

Snuke the Phantom Thief

(N) 个珠宝,第 (i) 个位于 ((x_i, y_i)),价值为 (v_i)。你可以选择一些珠宝,有若干限制,每个限制形如如下四种之一:

  • (x ≤ a_i) 的珠宝只能选择不超过 (b_i) 个;

  • (x ≥ a_i) 的珠宝只能选择不超过 (b_i) 个;

  • (y ≤ a_i) 的珠宝只能选择不超过 (b_i) 个;

  • (y ≥ a_i) 的珠宝只能选择不超过 (b_i) 个;

最大化选择的总价值。

(1 ≤ N ≤ 80,1 ≤ x_i, y_i, a_i≤ 100)

题解

https://www.cnblogs.com/zhoushuyu/p/10548483.html

首先这数据范围看着就很费用流

先考虑一维怎么做。

一个很妙的转化是:限制横坐标 (≤a_i) 的珠宝里至多选 (b_i) 个,等价于选择的横坐标第 (b_{i+1}) 小的珠宝,其横坐标必须 (>a_i)

如果是限制横坐标 (≥a_i) 的珠宝至多选 (b_i) 个,则可以先枚举选 (s) 个珠宝,然后限制就等价于选择的第 (s-b_i) 个珠宝其横坐标必须 (<a_i)。(前述只考虑 (b_i < s) 的限制,(b_i ≥ s) 的限制显然无效)

这样我们就可以得到 (s) 个二元组 ([l_j,r_j]),分别表示第 (j) 个珠宝的横坐标的范围限制。注意这 (s) 个二元组的 (l)(r) 应满足单调不降。

这样我们就得到了一个匹配的模型:二分图一侧有 (s) 个点,另一侧有 (n) 个点,满足范围限制的点之间连边,然后求一组最大权匹配即可。

至于二维的问题,可以直接把图拆成三份,即左侧 (s) 个点表示横坐标的限制,中间拆 (2n) 个点内部连权值的边表示珠宝,右侧另 (s) 个点表示纵坐标的限制。

#include<bits/stdc++.h>
using namespace std;

#define CO const
#define IN inline
typedef long long int64;

template<class T> IN T read(){
    T x=0,w=1;char c=getchar();
    for(;!isdigit(c);c=getchar())if(c=='-') w=-w;
    for(;isdigit(c);c=getchar()) x=x*10+c-'0';
    return x*w;
}
template<class T> IN T read(T&x){
    return x=read<T>();
}

CO int N=400;
CO int64 inf=1e18;
namespace flow{
    int n,S,T;
    struct edge {int v,c;int64 w;int a;};
    vector<edge> to[N];
    int64 dis[N];int vis[N];

    IN void init(int n){
        flow::n=n,S=n-1,T=n;
        for(int i=1;i<=n;++i) to[i].clear();
    }
    IN void link(int u,int v,int c,int64 w){
        to[u].push_back({v,c,w}),to[v].push_back({u,0,-w});
        to[u].back().a=to[v].size()-1,to[v].back().a=to[u].size()-1;
    }
    bool bfs(){
        fill(dis+1,dis+n+1,-inf),dis[T]=0;
        deque<int> Q={T};vis[T]=1;
        while(Q.size()){
            int u=Q.front();
            Q.pop_front(),vis[u]=0;
            for(CO edge&e:to[u])if(to[e.v][e.a].c){
                if(dis[e.v]<dis[u]-e.w){ // edit 1: -w
                    dis[e.v]=dis[u]-e.w;
                    if(vis[e.v]) continue;
                    if(Q.size() and dis[e.v]>=dis[Q.front()])
                        Q.push_front(e.v);
                    else Q.push_back(e.v);
                    vis[e.v]=1;
                }
            }
        }
        return dis[S]>-inf;
    }
    int dfs(int u,int lim){
        if(u==T) return lim;
        vis[u]=1;
        int rest=lim;
        for(edge&e:to[u])if(!vis[e.v] and e.c and dis[e.v]==dis[u]-e.w){
            int delta=dfs(e.v,min(e.c,rest));
            if(!delta) {dis[e.v]=-inf;continue;}
            rest-=delta,e.c-=delta,to[e.v][e.a].c+=delta;
            if(!rest) break;
        }
        vis[u]=0;
        return lim-rest;
    }
    int64 main(){
        int64 ans=0;
        while(bfs()) ans+=dfs(S,1e9)*dis[S];
        return ans;
    }
}

int n,X[N],Y[N];int64 V[N];
int m,O[N],A[N],B[N];
int L[N],R[N],D[N],U[N];

int64 solve(int s){
    fill(L+1,L+s+1,0),fill(D+1,D+s+1,0);
    fill(R+1,R+s+1,233),fill(U+1,U+s+1,233); // edit 2: range of XY
    for(int i=1;i<=m;++i)if(B[i]<s){
        if(O[i]=='L') L[B[i]+1]=A[i]+1;
        else if(O[i]=='R') R[s-B[i]]=A[i]-1;
        else if(O[i]=='D') D[B[i]+1]=A[i]+1;
        else U[s-B[i]]=A[i]-1;
    }
    for(int i=2;i<=s;++i){
        L[i]=max(L[i],L[i-1]);
        D[i]=max(D[i],D[i-1]);
    }
    for(int i=s-1;i>=1;--i){
        R[i]=min(R[i],R[i+1]);
        U[i]=min(U[i],U[i+1]);
    }
    flow::init(2*n+2*s+2);
    for(int i=1;i<=n;++i) flow::link(i,i+n,1,V[i]);
    for(int i=1;i<=s;++i){
        flow::link(flow::S,i+2*n,1,0),flow::link(i+2*n+s,flow::T,1,0);
        for(int j=1;j<=n;++j){
            if(L[i]<=X[j] and X[j]<=R[i]) flow::link(i+2*n,j,1,0);
            if(D[i]<=Y[j] and Y[j]<=U[i]) flow::link(j+n,i+2*n+s,1,0);
        }
    }
    return flow::main();
}
int main(){
    read(n);
    for(int i=1;i<=n;++i) read(X[i]),read(Y[i]),read(V[i]);
    read(m);
    for(int i=1;i<=m;++i){
        char opt[2];scanf("%s",opt);
        O[i]=opt[0],read(A[i]),read(B[i]);
    }
    int64 ans=0;
    for(int i=1;i<=n;++i) ans=max(ans,solve(i));
    printf("%lld
",ans);
    return 0;
}

好久不写费用流都写不对了……

以上是关于AGC31E Snuke the Phantom Thief的主要内容,如果未能解决你的问题,请参考以下文章

题解 [AGC017C] Snuke and Spells

AGC017C. Snuke and Spells

AGC017C Snuke and Spells(巧妙的线段覆盖模型)

agc045_d Lamps and Buttons

[agc003F]Fraction of Fractal

AtCoder Grand Contest 036D - Negative Cycle