一文读懂MapReduce 附流量解析实例
Posted gwyy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一文读懂MapReduce 附流量解析实例相关的知识,希望对你有一定的参考价值。
1.MapReduce是什么
Hadoop MapReduce是一个软件框架,基于该框架能够容易地编写应用程序,这些应用程序能够运行在由上千个商用机器组成的大集群上,并以一种可靠的,具有容错能力的方式并行地处理上TB级别的海量数据集。这个定义里面有着这些关键词,
一是软件框架,二是并行处理,三是可靠且容错,四是大规模集群,五是海量数据集。
2 MapReduce做什么
MapReduce擅长处理大数据,它为什么具有这种能力呢?这可由MapReduce的设计思想发觉。MapReduce的思想就是“分而治之”。
(1)Mapper负责“分”,即把复杂的任务分解为若干个“简单的任务”来处理。“简单的任务”包含三层含义:
一是数据或计算的规模相对原任务要大大缩小;二是就近计算原则,即任务会分配到存放着所需数据的节点上进行计算;三是这些小任务可以并行计算,彼此间几乎没有依赖关系。
(2)Reducer负责对map阶段的结果进行汇总。至于需要多少个Reducer,用户可以根据具体问题,通过在mapred-site.xml配置文件里设置参数mapred.reduce.tasks的值,缺省值为1。
一个比较形象的语言解释MapReduce:
我们要数图书馆中的所有书。你数1号书架,我数2号书架。这就是“Map”。我们人越多,数书就更快。 现在我们到一起,把所有人的统计数加在一起。这就是“Reduce”。
MapReduce流程
- inputFormat 先通过inputFormat 读进来
- InputSplit 然后通过split进行分片
- RecordReaders 简称RR 通过 recordReader读取切片
- map map处理 输出个临时结果
- Combiner 本机先做一次reduce 减少io 提升作业执行性能,但是也有缺点,如果做全局平均数 等就不准了
- shuffing - partitioner shuffing分发
- shuffing - sort shuffing排序
- reduce
- OutputFormat 最终输出
MapReduce的输入输出
MapReduce框架运转在<key,value>键值对上,也就是说,框架把作业的输入看成是一组<key,value>键值对,同样也产生一组<key,value>键值对作为作业的输出,这两组键值对有可能是不同的。
一个MapReduce作业的输入和输出类型如下图所示:可以看出在整个流程中,会有三组<key,value>键值对类型的存在。
MapReduce的处理流程
这里以WordCount单词计数为例,介绍map和reduce两个阶段需要进行哪些处理。单词计数主要完成的功能是:统计一系列文本文件中每个单词出现的次数,如图所示
编写一个简单的 WordCount mapReduce 脚本
编写map脚本
//继承mapper类 /** * KEYIN, Map任务读数据的key类型,offset,是每行数据起始位置的偏移量 Long * VALUEIN, Map任务读取数据的 value类型 就是一行行字符串 String * KEYOUT, map方法自定义实现输出key类型 * VALUEOUT map方法自定义实现输出value类型 * * hello world welcome * hello welcome * keyout String valueout int * (world,1) * hadoop 会有自定义类型 支持序列化和反序列化 */ public class WordCountMapper extends Mapper<LongWritable,Text,Text,IntWritable> { //自定义map 把自己需要的数据截取出来 然后交给后续步骤来做 @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //多个单词用 空格拆开 String[] words = value.toString().split("-"); for(String word:words) { context.write(new Text(word),new IntWritable(1)); } } }
编写Reduce
/** * Reduce 的输入是map的输出 * KEYIN, VALUEIN, KEYOUT, VALUEOUT 输入是 word,1 输出是 word,3 都是 string,int */ public class WordCountReduce extends Reducer<Text,IntWritable,Text,IntWritable> { /** * * @param key 对应的单词 * @param values 可以迭代的value 相同的key都会分发到一个reduce上面去 类似于 (hello,<1,1,1,1>) * @param context * @throws IOException * @throws InterruptedException */ @Override protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int count = 0; Iterator<IntWritable> iterator = values.iterator(); while(iterator.hasNext()) { IntWritable value = iterator.next(); //累加 count += value.get(); } context.write(key,new IntWritable(count)); } }
创建Job 运行
//windows需要设置 hadoop.home.dir System.setProperty("hadoop.home.dir", "D:javarootsofthadoop-2.6.0-cdh5.15.1"); //设置hadoop帐号 System.setProperty("HADOOP_USER_NAME","hadoop"); Configuration configuration = new Configuration(); configuration.set("fs.defaultFS","hdfs://192.168.1.100:8020"); //提交个作业 Job job = Job.getInstance(configuration); //设置job对应的主类 job.setJarByClass(App.class); //添加 Combiner job.setCombinerClass(WordCountReduce.class); //设置自定义的mapper类型 job.setMapperClass(WordCountMapper.class); job.setReducerClass(WordCountReduce.class); //设置输出类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); //设置reduce输出 job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); //设置输入和输出的路径 FileInputFormat.setInputPaths(job, new Path("/demo/wordcount/input")); FileOutputFormat.setOutputPath(job,new Path("/demo/wordcount/output")); //提交job boolean res = job.waitForCompletion(true); System.exit(res ? 0 :1);
实例:解析流量日志 算出每个手机号 上行和下行的流量和总流量
数据log
1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200 1363157995052 13826544101 5C-0E-8B-C7-F1-E0:CMCC 120.197.40.4 4 0 264 0 200 1363157991076 13926435656 20-10-7A-28-CC-0A:CMCC 120.196.100.99 2 4 132 1512 200 1363154400022 13926251106 5C-0E-8B-8B-B1-50:CMCC 120.197.40.4 4 0 240 0 200 1363157993044 18211575961 94-71-AC-CD-E6-18:CMCC-EASY 120.196.100.99 iface.qiyi.com 视频网站 15 12 1527 2106 200 1363157995074 84138413 5C-0E-8B-8C-E8-20:7DaysInn 120.197.40.4 122.72.52.12 20 16 4116 1432 200 1363157993055 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200 1363157995033 15920133257 5C-0E-8B-C7-BA-20:CMCC 120.197.40.4 sug.so.360.cn 信息安全 20 20 3156 2936 200 1363157983019 13719199419 68-A1-B7-03-07-B1:CMCC-EASY 120.196.100.82 4 0 240 0 200 1363157984041 13660577991 5C-0E-8B-92-5C-20:CMCC-EASY 120.197.40.4 s19.cnzz.com 站点统计 24 9 6960 690 200 1363157973098 15013685858 5C-0E-8B-C7-F7-90:CMCC 120.197.40.4 rank.ie.sogou.com 搜索引擎 28 27 3659 3538 200 1363157986029 15989002119 E8-99-C4-4E-93-E0:CMCC-EASY 120.196.100.99 www.umeng.com 站点统计 3 3 1938 180 200 1363157992093 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 15 9 918 4938 200 1363157986041 13480253104 5C-0E-8B-C7-FC-80:CMCC-EASY 120.197.40.4 3 3 180 180 200 1363157984040 13602846565 5C-0E-8B-8B-B6-00:CMCC 120.197.40.4 2052.flash2-http.qq.com 综合门户 15 12 1938 2910 200 1363157995093 13922314466 00-FD-07-A2-EC-BA:CMCC 120.196.100.82 img.qfc.cn 12 12 3008 3720 200 1363157982040 13502468823 5C-0A-5B-6A-0B-D4:CMCC-EASY 120.196.100.99 y0.ifengimg.com 综合门户 57 102 7335 110349 200 1363157986072 18320173382 84-25-DB-4F-10-1A:CMCC-EASY 120.196.100.99 input.shouji.sogou.com 搜索引擎 21 18 9531 2412 200 1363157990043 13925057413 00-1F-64-E1-E6-9A:CMCC 120.196.100.55 t3.baidu.com 搜索引擎 69 63 11058 48243 200 1363157988072 13760778710 00-FD-07-A4-7B-08:CMCC 120.196.100.82 2 2 120 120 200 1363157985066 13726238888 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200 1363157993055 13560436666 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200 1363157985066 13726238888 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 10000 20000 200
代码实现
//map类 public class AccessMapper extends Mapper<LongWritable,Text,Text,Access> { //把日志按切分 找到需要的三个字段 @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] lines = value.toString().split(" "); String phone = lines[1]; long up = Long.parseLong(lines[lines.length - 3]); long down = Long.parseLong(lines[lines.length - 2]); context.write(new Text(phone),new Access(phone,up,down,(up+down))); } } //reduce 类 public class AccessReduce extends Reducer<Text,Access,NullWritable,Access> { /** * @param key 手机号 * @param values Access * @param context * @throws IOException * @throws InterruptedException */ @Override protected void reduce(Text key, Iterable<Access> values, Context context) throws IOException, InterruptedException { long ups = 0; long downs = 0; for (Access access:values) { ups += access.getUp(); downs += access.getDown(); } context.write(NullWritable.get(),new Access(key.toString(),ups,downs,(ups+downs))); } } //job 执行 public static void main(String[] args) throws Exception { //windows需要设置 hadoop.home.dir System.setProperty("hadoop.home.dir", "D:javarootsofthadoop-2.6.0-cdh5.15.1"); //设置hadoop帐号 // System.setProperty("HADOOP_USER_NAME","hadoop"); Configuration configuration = new Configuration(); //configuration.set("fs.defaultFS","hdfs://192.168.1.100:8020"); Job job = Job.getInstance(configuration); job.setJarByClass(App.class); job.setMapperClass(AccessMapper.class); job.setReducerClass(AccessReduce.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Access.class); job.setOutputKeyClass(NullWritable.class); job.setOutputValueClass(Access.class); //设置输入和输出的路径 FileInputFormat.setInputPaths(job, new Path("input")); FileOutputFormat.setOutputPath(job,new Path("output")); //提交job boolean res = job.waitForCompletion(true); System.exit(res ? 0 :1); }
最后执行结果
phone=‘13480253104‘, up=180, down=180, sum=360 phone=‘13502468823‘, up=7335, down=110349, sum=117684 phone=‘13560436666‘, up=1116, down=954, sum=2070 phone=‘13560439658‘, up=2034, down=5892, sum=7926 phone=‘13602846565‘, up=1938, down=2910, sum=4848 phone=‘13660577991‘, up=6960, down=690, sum=7650 phone=‘13719199419‘, up=240, down=0, sum=240 phone=‘13726230503‘, up=2481, down=24681, sum=27162 phone=‘13726238888‘, up=12481, down=44681, sum=57162 phone=‘13760778710‘, up=120, down=120, sum=240 phone=‘13826544101‘, up=264, down=0, sum=264 phone=‘13922314466‘, up=3008, down=3720, sum=6728 phone=‘13925057413‘, up=11058, down=48243, sum=59301 phone=‘13926251106‘, up=240, down=0, sum=240 phone=‘13926435656‘, up=132, down=1512, sum=1644 phone=‘15013685858‘, up=3659, down=3538, sum=7197 phone=‘15920133257‘, up=3156, down=2936, sum=6092 phone=‘15989002119‘, up=1938, down=180, sum=2118 phone=‘18211575961‘, up=1527, down=2106, sum=3633 phone=‘18320173382‘, up=9531, down=2412, sum=11943 phone=‘84138413‘, up=4116, down=1432, sum=5548
以上是关于一文读懂MapReduce 附流量解析实例的主要内容,如果未能解决你的问题,请参考以下文章