二分法(二分查找,二分答案)
Posted denerate
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二分法(二分查找,二分答案)相关的知识,希望对你有一定的参考价值。
二分是一个常用的小技巧,可以将原本O(n)的复杂度降为O(log n)。但是二分也有局限性,只能在一个单调有序的集合中使用,所以,对于一道题目,我们要先判断它是否具有可二分性,然后再进行二分。
1.二分查找
思路:
在一个不严格单调的有序集合中,我们如果要查找一个元素的位置,可以用l来存储下界,用r来存储上界,然后将整个集合分成两半,通过对集合中间元素与目标元素的比较,来判断目标元素是在集合中的左半部分还是右半部分(如果中间元素与目标元素相同,则退出函数,返回中间元素的位置),随后更新上界和下界。不断进行这样的操作,直至l>r为止。
代码:
1 //这里以在一个不严格单调递增数组中查找元素为例 2 int find(int l,int r,int v)//l存储上界,r存储下界,v即为目标元素 3 { 4 if(l>r) return -1;//如果找不到就返回-1 5 int mid=(l+r)>>1;//mid即为中间元素的位置,这里用位运算提高效率,相当于"int mid=(l+r)/2;"(位运算请见https://blog.csdn.net/chenxiaoran666/article/details/79770278) 6 //对中间元素与目标元素进行比较 7 if(sum[mid]==v) return mid;//中间元素与目标元素相同,则退出函数,返回中间元素的位置 8 else if(sum[mid]>v) find(l,mid-1);//中间元素大于目标元素,将上界更新为中间元素的位置-1 9 else find(mid+1,r);//中间元素小于目标元素,将下界更新为中间元素的位置+1 10 }
2.二分答案
思路:当遇到求极值的问题时,如果该题目的答案具有可二分性,我们同样可以用二分法来解决。依旧用l来存储下界,用r来存储上界,随后用验证函数check()来判断l与r的中间值作为答案是否可行,并不断更新上界和下界,有着极高的效率,一般就是求最大的最小,最小的最大。
代码:
1 //这里以求最大值为例 2 void find(int l,int r) 3 { 4 if(l>r) return;//当上界大于下界时,就退出函数 5 int mid=(l+r)>>1;//mid即为l与r的中间值 6 //用验证函数check()来判断l与r的中间值作为答案是否可行,其中check()函数请视题目情况自行编写 7 if(check(mid)) ans=mid,find(mid+1,r);//若可行,则更新答案,并将下界更新为中间元素的位置+1 8 else find(l,mid-1);//若不可行,则将上界更新为中间元素的位置-1 9 10 }
以上是关于二分法(二分查找,二分答案)的主要内容,如果未能解决你的问题,请参考以下文章