基于 MapReduce 的单词计数(Word Count)的实现

Posted justsong

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于 MapReduce 的单词计数(Word Count)的实现相关的知识,希望对你有一定的参考价值。

完整代码:

// 导入必要的包
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {
  // Mapper
  public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
    public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
  }

  // Reducer
  public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();
    public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
      int sum = 0;
      for(int i=0;i<values.length;i++){
        sum += values[i].get();
      }
      result.set(sum);
      context.write(key, result);
    }
  }

  public static void main(String[] args) throws Exception {
    // 对任务进行配置
    Configuration conf = new Configuration();
    Job job = Job.getInstance(conf, "Word Count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}

运行截图:
技术图片

以上是关于基于 MapReduce 的单词计数(Word Count)的实现的主要内容,如果未能解决你的问题,请参考以下文章

基于Ubuntu Kylin系统在Hadoop的环境下调用MapReduce进行单词WordCount计数

基于Ubuntu Kylin系统在Hadoop的环境下调用MapReduce进行单词WordCount计数

MapReduce之单词计数

大数据MapReduce(单词计数;二次排序;计数器;join;分布式缓存)

大数据学习之MapReduce编程案例一单词计数 10

学习笔记Hadoop—— MapReduce开发入门