数据特征分析-相关性分析
Posted iceredtea
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据特征分析-相关性分析相关的知识,希望对你有一定的参考价值。
1.相关性分析
分析连续变量之间的线性相关程度的强弱
图示初判 / Pearson相关系数(皮尔逊相关系数) / Sperman秩相关系数(斯皮尔曼相关系数)
# 图示初判
# (1)变量之间的线性相关性
data1 = pd.Series(np.random.rand(50)*100).sort_values()
data2 = pd.Series(np.random.rand(50)*50).sort_values()
data3 = pd.Series(np.random.rand(50)*500).sort_values(ascending = False)
# 创建三个数据:data1为0-100的随机数并从小到大排列,data2为0-50的随机数并从小到大排列,data3为0-500的随机数并从大到小排列,
fig = plt.figure(figsize = (10,4))
ax1 = fig.add_subplot(1,2,1)
ax1.scatter(data1, data2)
plt.grid()
# 正线性相关
ax2 = fig.add_subplot(1,2,2)
ax2.scatter(data1, data3)
plt.grid()
# 负线性相关
# 图示初判
# (2)散点图矩阵初判多变量间关系
data = pd.DataFrame(np.random.randn(200,4)*100, columns = [‘A‘,‘B‘,‘C‘,‘D‘])
pd.scatter_matrix(data,figsize=(8,8),
c = ‘k‘,
marker = ‘+‘,
diagonal=‘hist‘,
alpha = 0.8,
range_padding=0.1)
data.head()
2.Pearson相关系数
# Pearson相关系数
data1 = pd.Series(np.random.rand(100)*100).sort_values()
data2 = pd.Series(np.random.rand(100)*50).sort_values()
data = pd.DataFrame({‘value1‘:data1.values,
‘value2‘:data2.values})
print(data.head())
print(‘------‘)
# 创建样本数据
u1,u2 = data[‘value1‘].mean(),data[‘value2‘].mean() # 计算均值
std1,std2 = data[‘value1‘].std(),data[‘value2‘].std() # 计算标准差
print(‘value1正态性检验:
‘,stats.kstest(data[‘value1‘], ‘norm‘, (u1, std1)))
print(‘value2正态性检验:
‘,stats.kstest(data[‘value2‘], ‘norm‘, (u2, std2)))
print(‘------‘)
# 正态性检验 → pvalue >0.05
data[‘(x-u1)*(y-u2)‘] = (data[‘value1‘] - u1) * (data[‘value2‘] - u2)
data[‘(x-u1)**2‘] = (data[‘value1‘] - u1)**2
data[‘(y-u2)**2‘] = (data[‘value2‘] - u2)**2
print(data.head())
print(‘------‘)
# 制作Pearson相关系数求值表
r = data[‘(x-u1)*(y-u2)‘].sum() / (np.sqrt(data[‘(x-u1)**2‘].sum() * data[‘(y-u2)**2‘].sum()))
print(‘Pearson相关系数为:%.4f‘ % r)
# 求出r
# |r| > 0.8 → 高度线性相关
# Pearson相关系数 - 算法
data1 = pd.Series(np.random.rand(100)*100).sort_values()
data2 = pd.Series(np.random.rand(100)*50).sort_values()
data = pd.DataFrame({‘value1‘:data1.values,
‘value2‘:data2.values})
print(data.head())
print(‘------‘)
# 创建样本数据
data.corr()
# pandas相关性方法:data.corr(method=‘pearson‘, min_periods=1) → 直接给出数据字段的相关系数矩阵
# method默认pearson
3.Sperman秩相关系数
# Sperman秩相关系数
data = pd.DataFrame({‘智商‘:[106,86,100,101,99,103,97,113,112,110],
‘每周看电视小时数‘:[7,0,27,50,28,29,20,12,6,17]})
print(data)
print(‘------‘)
# 创建样本数据
data.sort_values(‘智商‘, inplace=True)
data[‘range1‘] = np.arange(1,len(data)+1)
data.sort_values(‘每周看电视小时数‘, inplace=True)
data[‘range2‘] = np.arange(1,len(data)+1)
print(data)
print(‘------‘)
# “智商”、“每周看电视小时数”重新按照从小到大排序,并设定秩次index
data[‘d‘] = data[‘range1‘] - data[‘range2‘]
data[‘d2‘] = data[‘d‘]**2
print(data)
print(‘------‘)
# 求出di,di2
n = len(data)
rs = 1 - 6 * (data[‘d2‘].sum()) / (n * (n**2 - 1))
print(‘Pearson相关系数为:%.4f‘ % rs)
# 求出rs
# Pearson相关系数 - 算法
data = pd.DataFrame({‘智商‘:[106,86,100,101,99,103,97,113,112,110],
‘每周看电视小时数‘:[7,0,27,50,28,29,20,12,6,17]})
print(data)
print(‘------‘)
# 创建样本数据
data.corr(method=‘spearman‘)
# pandas相关性方法:data.corr(method=‘pearson‘, min_periods=1) → 直接给出数据字段的相关系数矩阵
# method默认pearson
以上是关于数据特征分析-相关性分析的主要内容,如果未能解决你的问题,请参考以下文章
R语言数据集探索性数据分析(exploratory data analysis, EDA)示例:所有特征的直方图可视化基于目标变量的分组可视化每个特征的箱图特征的相关性分析pairs散点图矩阵