AGC40.Two Contests

Posted codancer

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了AGC40.Two Contests相关的知识,希望对你有一定的参考价值。

题意

(n)段区间,要把他们分到两个不同的集合(S,T)中,不能有剩余,每个区间只能在一个集合里,令(S)中所有区间的交的长度为(ls)(T)中所有区间的交为(lt),求(max{ls+lt})

题解

找到 (L) 最大的区间 (p)(r) 最小的区间 (q),那么只有两种情况:

(1.) (p,q)在同一个集合内,那么即使把剩下的所有的区间都放到这个集合,最大值也不变,我们一定是把最长的放到另一个区间内,此时答案为(maxlen+minR-maxL+1)

(2.) (p,q)不在同一个集合里,那么对于(p)所在的集合,交的长度为(min{max{R_i-maxxL+1,0}}),对于(q)所在的集合,交的长度为(min{max{minR-L_i+1,0}}),这个问题可以转化为:一个数组,每个元素包含(a_i,b_i)l两个参数,把这个数组分成两部分,使得(min{a_i}_{iin{s}}+min{b_j}_{jin{t}})最大。

考虑把(a_i)从大到小排序,同时维护(b_i)后缀最小值,每次枚举(i)即可。时间复杂度(O(nlog(n)))

代码:

#include<bits/stdc++.h>

using namespace std;
const int N = 2e5+100;
struct node{
    long long a,b;
}s[N];
bool cmp(node a,node b){
    return a.a>b.a;
}
long long L[N],R[N];
long long minnore[N];//后缀最小的B
int main(){
    int n;
    cin>>n;
    for(int i=1;i<=n;i++) cin>>L[i]>>R[i];
    long long maxx=0;long long minn=1e18;
    int p,q;
    long long maxxlength=0;
    for(int i=1;i<=n;i++){
        if(L[i]>maxx){
            maxx=L[i];
            p=i;
        }
        if(R[i]<minn){
            q=i;
            minn=R[i];
        }
        maxxlength=max(maxxlength,R[i]-L[i]+1);
    }
    long long ans1=maxxlength+(minn>=maxx?minn-maxx+1:0);
    for(int i=1;i<=n;i++){
        s[i].a=max(R[i]-maxx+1,0LL);
        s[i].b=max(minn-L[i]+1,0LL);
    }
  //  for(int i=1;i<=n;i++) cout<<i<<' '<<s[i].a<<' '<<s[i].b<<endl;
    sort(s+1,s+n+1,cmp);
    minnore[n+1]=(1e18);
    for(int i=n;i>=1;i--) minnore[i]=min(minnore[i+1],s[i].b);
    long long ans2=0;
    for(int i=1;i<=n-1;i++){
        ans2=max(ans2,s[i].a+minnore[i+1]);
    }
    cout<<max(ans1,ans2)<<endl;
    return 0;
}

以上是关于AGC40.Two Contests的主要内容,如果未能解决你的问题,请参考以下文章

AtCoder AGC030B Tree Burning

AtCoder AGC004E Salvage Robots (DP)

agc045_b 01 Unbalanced

[AGC034D] Manhattan Max Matching

agc045_c Range Set

agc025_d Choosing Points