[Mathematics][Fundamentals of Complex Analysis][Small Trick] The Trick on drawing the picture of sin
Posted raymondjiang
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[Mathematics][Fundamentals of Complex Analysis][Small Trick] The Trick on drawing the picture of sin相关的知识,希望对你有一定的参考价值。
Exercises 3.2
21.
(a). For $omega = sinz$, what is the image of the semi-infinite strip
$S_1 = {x+iy|-pi<x<pi,y>0}$
(b). what is the image of the smaller semi-infinite strip
$S_2 = {x+iy|-frac{pi}{2}<x<frac{pi}{2},y>0}$
Solutions:
First of all, let‘s assume $z = x + iy$, then expand the $omega$,
$sin(x+iy)=sinxcdot coshy+icosxcdot sinhy$
In addition, observe closely, we will find that it‘s really hard to draw the $w-plane$, whatever the method we use, including "Freeze" Variable and expressing the formula in terms of $displaystyle e^z$. But now, we can use the concept linear independence on functions to solve the problems!
Namely, if we assume $f=sinxcdot coshy$,$g=cosxcdot sinhy$, the value of $g$ doesn‘t affect that of $f$! OR, the other way round.
Proof: let‘s assume $c_1,c_2 in C$, and $c_1 f+c_2 g = 0$,then
$c_1 tanx cdot tanhy+c_2=0$
if, $c_1 e 0$, we have $displaystyle tanxcdot tanhy + frac{c_2}{c_1}=0$. Since $x, y$ vary freely in the interval, it‘s quite obvious that it‘s impossible for $c_1$ to be $0$.
Thus, $c_1 = 0$, and $c_2 = 0$.
So, to draw the picture of $omega$, we just need to find the range of $f$ and $g$.
The remaining parts are left for the readers.
以上是关于[Mathematics][Fundamentals of Complex Analysis][Small Trick] The Trick on drawing the picture of sin的主要内容,如果未能解决你的问题,请参考以下文章
essential ,basic,fundamental,vital的区别?