排队论

Posted pxlsdz

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了排队论相关的知识,希望对你有一定的参考价值。

排队论简介

历史

  • 排队论又称随机服务系统,是研究系统随机聚散现象和随机 服务系统工作过程的数学理论和方法,是运筹学的一个分支。
  • 排队论的基本思想是 1909 年丹麦数学家 A.K. 埃尔朗在解 决自动电话设计问题时开始形成的,当时称为话务理论。
  • 现实生活中如排队买票、病人排队就诊、轮船进港、高速路 上汽车排队通过收费站、机器等待修理等都属于排队论问题。

定义

  1. 通过对服务对象到来及服务时间的统计研究
  2. 得出这些数量指标(等待时间、排队长度、忙期长短(决定服务台数量)等)的 统计规律,
  3. 然后根据这些规律来改进服务系统的结构或重新组织被服务 对象
  4. 使得服务系统既能满足服务对象的需要,又能使机构的费用 最经济或某些指标最优。

应用

  • CUMCM 2009B 的眼科病床的合理安排问题
  • MCM 2005B 收费站最佳配置问题
  • ICM 2017D 机场安检问题

模型与模拟

排队论基本构成与指标

排队论的基本构成

  • 输入过程:描述顾客按照怎样的规律到达排队系统。顾客总 体(有限/无限)、到达的类型(单个/成批)、到达时间间隔。
  • 排队规则:指顾客按怎样的规定次序接受服务。常见的有等 待制、损失制、混合制、闭合制。
  • 服务机构:服务台的数量; 服务时间服从的分布

排队系统的数量指标

  • 队长:系统中的平均顾客数(包括正在接受服务的顾客)。
  • 等待队长:系统中处于等待的顾客的数量。
  • 等待时间:等待时间包括顾客的平均逗留时间。
  • 忙期:连续保持服务的时长。

数学表示

排队论中的符号表示

$$
{A/B/C/n}
$$

A 输入过程,B 服务时间,C 服务台数,n 系统容量。

排队论表示实例 M/M/S/∞

  • 输入过程是 Poisson 流 (顾客到达的时间服从泊松分布,到达的时间间隔便服从负指数分布)
  • 服务时间服从负指数分布
  • 系统有 S 个服务台平行服务
  • 系统容量为无穷大的等待制排队系统

等待制模型 M/M/S/∞ S=1

技术图片

单位时间内到达的人数为λ,所以[0,t] 时间内到达的顾客平均数为 λt

μ代表单位时间服务人的个数
判断模型是否稳定,一般用比较λ和μ的大小(下图的系统服务强度)


技术图片

$(1- ho)sum_{n=0}^{infty}n ho^{n}$,当$ ho$<1时候级数收敛

平均等待队长比平均队长少一人,因为一人在接受服务。

技术图片

平均等待时间=逗留的时间-服务的时间

Little公式是根据前面推导出来。

实例

技术图片

λ/μ=8/9<1,系统是稳定的。

平均等待7.1个人

等待制模型 M/M/S/∞ S>1(服务台数量>1)

技术图片

k=[0:s-1]

技术图片

实例

案例

  • 来访人员按照 Poisson 流到达,到达速率为 μ = 20 人/小时。
  • 接待人员的服务速率间服 λ = 9 人/小时的负指数分布。
  • 为使来访问者等待不超过半小时,最少应配置几名接待员?
lambda = 20; mu = 9; s = 3;
rho = lambda/(s*mu); %服务强度
k=(0:s-1);
p0 = 1./( sum((s*rho).^k./factorial(k)) + ... 
     (s*rho)^s/(factorial(s)*(1-rho)) ); %服务台空闲的概率
Ls = s*rho + (s*rho)^s*rho/(factorial(s)*(1-rho)^2)*p0; %平均长度
Ws = Ls/lambda; %平均逗留时间
Wq = Ws - 1/mu%平均等待时间

其他模型

技术图片

混合制:

系统容量K为队长,理发店的的凳子数(等待凳子和服务凳子)

闭合制:

工厂的工人,使用的机器。

单服务台

做模拟:

开始服务, 到达, 离开时刻和服务, 等待时长的关系

  • 服务时刻(i) = max{到达时刻(i),离开时刻(i?1)}
  • 离开时刻(i) = 服务时刻(i) + 服务时长(i)
  • 等待时长(i) = 离开时刻(i)?到达时刻(i)

多服务台

开始服务, 到达, 离开时刻和服务, 等待时长的关系

  • 服务时刻(i) = max{到达时刻(i),min{服务台空闲时刻}} (假设所有顾客目的尽早的接受服务)
  • 所使用服务台(i) = k, 其中 k 使服务台空闲时刻(k) = min
  • 离开时刻(i) = 服务时刻(i) + 服务时长(i)
  • 服务台空闲时刻(k) = 离开时刻(i)
  • 等待时长(i) = 离开时刻(i)?到达时刻(i)(包括服务时间)

自动取款机问题

问题

  • 银行计划安置取款机, A 机价格和平均服务率都是 B 机的 2 倍. 应购置 1 台 A 机还是 2 台 B 机?
  • 顾客平均每分钟到达 1 位,A 型机的平均服务时间为 0.9, B 型机为 1.8 分钟, 顾客到达间隔和服务时间都服从指数分布.

单服务台

属于M/M/1/∞ 模型

n = 100000; % 模拟顾客总数 
mu = 1; muA = 0.9; % 到达率和服务率 
tarr = cumsum(exprnd(mu,1,n));% 到达时刻 ,exprnd生成指数分布(到达的时间间隔)
tsrv = exprnd(muA,1,n); % 服务时长 
tsta = zeros(1,n); % 初始化服务时刻 
tlea = zeros(1,n);% 初始化离开时刻 
twat = zeros(1,n); % 初始化等待时长 
tsta(1) = tarr(1);% 首位顾客服务时刻=到达时刻 
tlea(1) = tsta(1) + tsrv(1); % 首位顾客离开时刻 
twtime(1) = tlea(1) - tarr(1); % 首位顾客等待时长=0 
% 上面初始化第一个顾客
for i = 2:n
     % 服务时刻 = max{到达时刻, 上一个顾客离开时刻} 
    tsta(i) = max(tarr(i),tlea(i-1));
    tlea(i) = tsta(i) + tsrv(i);% 离开时刻=服务时刻+服务时长 
    twat(i) = tlea(i) - tarr(i);;% 等待时长=离开时刻-到达时刻 
end
hist(twat)
sum(twat)/n

两服务台(多个服务台)

n = 100000;  % 模拟顾客总数 
mu = 1; muB = 1.8; % 到达率和服务率 
tarr = cumsum(exprnd(mu,1,n)); % 到达时刻 
tsrv = exprnd(muB,1,n);% 服务时长 
tsta = zeros(1,n);% 初始化服务/离开时刻 
tlea = zeros(1,n); % 初始化等待时长 
twat = zeros(1,n);% 初始化服务台结束服务时刻 
last = [0 0];%几个服务台几个0
for i = 2:n
    [minemp, k] = min(last); % 找出最快结束服务的服务台时刻 
    tsta(i) = max(tarr(i),minemp);% 服务时刻 
    tlea(i) = tsta(i) + tsrv(i); % 离开时刻
    last(k) = tlea(i); % 服务台结束服务时刻 
    twat(i) = tlea(i) - tarr(i);% 等待时长 
end
hist(twat)
sum(twat)/n

技术图片

真题

2013HIMCM-B: 银行服务问题

技术图片

分析

如何生成序列来满足题意概率分布呢?

举一个例子,由时间间隔 t = [0 1 2] 和概率 p = [0.2 0.3 0.5] 得到各到顾客达时间间隔 。

  1. 先把概率p倒过来求前缀和
    $$
    p′ = cumsum([0.5,0.3,0.2]) = [0.5,0.8,1.0]
    $$

  2. 我们生成随机数x,则x<=0.5的概率为0.5,0.5<x<=0.8的概率为0.3,0.8<x<=1.0的概率为0.2
    $$
    R = rand(1,5) = [0.1,0.9,0.2,0.4,0.8];
    $$

  3. 替换随机序列的数

    把随机序列R<0.5的数换成2……

$$
R(R < 0.5) = 2, R(R < 0.8) = 1, R(p < 1.0) = 0
$$

由到达时间间隔得到各顾客到达时刻
$$
间隔 = [0,1,3,2] ? 时刻 = cumsum(间隔) = [0,1,4,6]
$$

开始服务, 到达, 离开时刻和服务, 等待时间的关系:

  • 开始服务的时刻(i) = max{到达时刻(i),离开时刻 (i-1)}
  • 离开时刻(i) = 开始服务的时刻(i) + 服务时间(i)

  • 等待时间(i) = 离开时刻(i)?到达时刻(i)?服务时间(i)(不是逗留时刻

代码

%计算 Tarrival到达时刻, Tservice服务时间
n = 150; 
ta = [5 4 3 2 1 0]; 
pa = [0.05 0.25 0.35 0.10 0.15 0.10]; 
ts = [ 4 3 2 1 ]; 
ps = [ 0.15 0.40 0.20 0.25 ]; 
pacum = cumsum(pa);%递增
pscum = cumsum(ps); 
Tarrival = rand(1,n); 
for i = 1:length(pa) 
    Tarrival(Tarrival<pacum(i)) = ta(i); 
end

Tarrival = cumsum(Tarrival);%累加才得到到达时刻 
Tservice = rand(1,n); 
for i = 1:length(ps) 
    Tservice(Tservice<pscum(i)) = ts(i); 
end


Tstart = zeros(1,n); %开始服务的时刻
Tleave = zeros(1,n); %离开的时刻
Twait = zeros(1,n);  %等待的时长
line = zeros(1,n);   %队长

%初始化第一位顾客
Tstart(1) = Tarrival(1); 
Tleave(1) = Tstart(1) + Tservice(1); 
Twait(1) = Tleave(1) - Tarrival(1) - Tservice(1); 
line(1) = 0; 

for i = 2:n 
    Tstart(i) = max(Tleave(i-1), Tarrival(i)); 
    Tleave(i) = Tstart(i) + Tservice(i); 
    Twait(i) = Tleave(i) - Tarrival(i) - Tservice(i); 
    
    %队长的计算,一直找到前面的人离开了
    k = i-1;
    while ( k>0 )&&( Tarrival(i)<Tleave(k) )  
        line(i) = line(i) + 1; 
        k = k - 1; 
    end
end
subplot(1,2,1)
hist(Twait)
line
subplot(1,2,2)
hist(line)

因为随机数,所以可以多算几次,取平均值。

技术图片

ICM2017-D: 优化机场安检口旅客通行

技术图片

问题

  • 建立一个或多个模型,研究旅客通过安检口的流量,确定瓶 颈,明确判断当前流程问题区域位置。

  • 设计两个或更多对现有系统德潜在改进,提高旅客通信,减 少等待时间。模拟这些变化展示改进如何影响流程。

技术图片

排队系统: μr = 10, μb = 13, μ1 = 12, μ2 = 9, μ3 = 16

多服务并联

function [tlea, twat, qlen] = mms(tarr, type, mus)
% MMS Stochastic simulation for M/M/c queue
%
% [tlea, twat, qlen] = mms(tarr, type, mus)
%     tarr :每一个顾客到达的时间
%     type :客户类型参数
%     mus  :服务台的服务速度
%     tlea :服务台的离开时间
%     twat :服务台的等待时间
%     qlen :客户的队列长度(排队的长度) 

narr = length(tarr);        % 客户的个数
nsvr = length(mus);         % 服务台的数量

% last time at which a customer left a particular server
last = zeros(nsvr,1);

[tsta, tlea, twat, qlen] = deal(zeros(narr,1));

rndm = zeros(nsvr,narr);    % rndm(k,i) = 第i个客户的服务时间
for k = 1:nsvr; 
    rndm(k,:) = exprnd(mus(k)*type); %生成服从指数分布的随机数
end

for i = 1:narr
    % find booth service was/will be emptied soonest and record
    [minemp, ksvr(i)] = min(last); 
    
    % start time = max{arrival time, minemp}
    tsta(i) = max(tarr(i), minemp); 
    
    % severe time = exponential random number with mean parameter mu
    tsvr(i) = rndm(ksvr(i),i);
    
    % leaving time = start time + service time
    tlea(i) = tsta(i) + tsvr(i);
    
    % last time of k-th server = leaving time of i-th customer 
    last(ksvr(i)) = tlea(i);
    
    % waiting time = leaving time - arrival time
    twat(i) = tlea(i) - tarr(i);
    
    % queue length for i customer
    j = i - 1;
    while j>0 && tarr(i)<tlea(j)
        if ksvr(j)==ksvr(i); qlen(i) = qlen(i) + 1; end
        j = j - 1;
    end
end

分别求出A区域两个队列(红色和绿色队列)的离开的时刻,作为下一阶段服务台到达的时刻。

具体使用看下面主程序。

串并混合系统

μr = 10, μb = 13, μ1 = 12, μ2 = 9, μ3 = 16

n1 = 2;  n2 = 3; n3 = 3;% ni表示第i个服务台的数量
mu1 = 12; mu2 = 9; mu3 = 16;% 服务台的到达率
muR = 10; muB = 13;% 蓝色与红色服务台的服务率

nR = ceil(24*3600/muR); nB = ceil(24*3600/muB);% 服务的人数
tArrR = cumsum(exprnd(muR,nR,1));
tArrB = cumsum(exprnd(muB,nB,1)); %到达时刻
tArr = [tArrR; tArrB];
type = [0.8*ones(nR,1); 1.2*ones(nB,1)];%区分两种服务的时长
%A区域
[tLeaR, tWatR, qLenR] = mms(tArrR, ones(nR,1), mu1*ones(n1,1));
[tLeaB, tWatB, qLenB] = mms(tArrB, ones(nB,1), mu2*ones(n2,1));


[tArrG, order] = sort([tLeaR; tLeaB]);%输出为离开A区域的时间,排序进入下一区域
%order数组为排序后的数组在原始数组的位置,保存原来的顺序
%下一区域
[tLeaG, tWatG, qLenG] = mms(tArrG, type(order), mu3*ones(n3,1));
tLeaG(order) = tLeaG;
tWatG(order) = tWatG;
qLenG(order) = qLenG;


figure('position',[50,50,1200,600])
subplot(2,3,1); hist(qLenR); ylabel('Frequency'); 
xlabel('length of the waiting line'); title('Red')
subplot(2,3,4); hist(tWatR); ylabel('Frequency'); 
xlabel('waiting time'); title('Red')


subplot(2,3,2); hist(qLenB); ylabel('Frequency');
xlabel('length of the waiting line'); title('Blue')
subplot(2,3,5); hist(tWatB); ylabel('Frequency'); 
xlabel('waiting time'); title('Blue')

subplot(2,3,3); hist(qLenG); ylabel('Frequency');
xlabel('length of the waiting line'); title('Green')
subplot(2,3,6); hist(tWatG); ylabel('Frequency'); 
xlabel('waiting time'); title('Green')

技术图片

以上是关于排队论的主要内容,如果未能解决你的问题,请参考以下文章

排队论模型

性能分析之排队论应用

随机过程18 - 连续时间马氏链与排队论

排队论——随机时间概率

随机过程18 - 连续时间马氏链与排队论

随机过程18 - 连续时间马氏链与排队论