tensorboard使用
Posted liuxinyu12378
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tensorboard使用相关的知识,希望对你有一定的参考价值。
import os os.environ[‘TF_CPP_MIN_LOG_LEVEL‘] = ‘2‘ import tensorflow as tf #tensorboard --logdir="./" def linearregression(): with tf.variable_scope("original_data"): X = tf.random_normal([100,1],mean=0.0,stddev=1.0) y_true = tf.matmul(X,[[0.8]]) + [[0.7]] with tf.variable_scope("linear_model"): weights = tf.Variable(initial_value=tf.random_normal([1,1])) bias = tf.Variable(initial_value=tf.random_normal([1,1])) y_predict = tf.matmul(X,weights)+bias with tf.variable_scope("loss"): loss = tf.reduce_mean(tf.square(y_predict-y_true)) with tf.variable_scope("optimizer"): optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(loss) #收集观察张量 tf.summary.scalar("losses",loss) tf.summary.histogram("weight",weights) tf.summary.histogram("biases",bias) #合并收集的张量 merge = tf.summary.merge_all() init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) filewriter = tf.summary.FileWriter("./tmp",graph=sess.graph) for i in range(1000): sess.run(optimizer) print("loss:", sess.run(loss)) print("weight:", sess.run(weights)) print("bias:", sess.run(bias)) summary = sess.run(merge) filewriter.add_summary(summary,i) if __name__ == ‘__main__‘: linearregression()
以上是关于tensorboard使用的主要内容,如果未能解决你的问题,请参考以下文章
深度学习pytorch使用tensorboard可视化实验数据
深度学习pytorch使用tensorboard可视化实验数据
错误处理笔记 导入 torch.utils.tensorboard时 找不到tensorboard
运行代码时出现ModuleNotFoundError: No module named ‘tensorboard‘解决方法