二叉排序树

Posted yangzhixue

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二叉排序树相关的知识,希望对你有一定的参考价值。

二叉排序树介绍:

  二叉排序树:BST(Binary Sort Tree),对于二叉排序树的任何一个非叶子结点,要求左子节点的值比当前节点值小,右子节点比当前节点值大。

  特别说明 :如果有相同的值,可以将该节点放在左子节点或右子节点

 

1.二叉排序树的创建和遍历

  一个数组创建成对应的二叉排序树,并且使用中序遍历二叉排序树

2.二叉排序树的删除:

二叉排序树的删除情况比较复杂,有下面三种情况考虑

1)删除叶子结点

2)删除只有一个子树的节点

3)删除有两棵子树的节点

技术图片

 

代码实现思路:先考虑第一种情况,再考虑第三种情况,然后剩下的就是第二种情况(因为第二种比较麻烦)

第一种情况:

删除叶子节点 (比如:2, 5, 9, 12)

思路

(1) 需求先去找到要删除的结点 targetNode

(2) 找到targetNode 的 父结点 parent

(3) 确定 targetNode 是 parent的左子结点 还是右子结点

(4) 根据前面的情况来对应删除 左子结点 parent.left = null 右子结点 parent.right = null;

第二种情况:

删除只有一颗子树的节点 比如 1

思路

(1) 需求先去找到要删除的结点 targetNode

(2) 找到targetNode 的 父结点 parent

(3) 确定targetNode 的子结点是左子结点还是右子结点

(4) targetNode 是 parent 的左子结点还是右子结点

(5) 如果targetNode 有左子结点

5. 1 如果 targetNode 是 parent 的左子结点

parent.left = targetNode.left;

5.2 如果 targetNode 是 parent 的右子结点

parent.right = targetNode.left;

(6) 如果targetNode 有右子结点

6.1 如果 targetNode 是 parent 的左子结点

parent.left = targetNode.right;

6.2 如果 targetNode 是 parent 的右子结点

parent.right = targetNode.right

情况三 :

删除有两颗子树的节点. (比如:7, 3,10 )

思路

(1) 需求先去找到要删除的结点 targetNode

(2) 找到targetNode 的 父结点 parent

(3) 从targetNode 的右子树找到最小的结点

(4) 用一个临时变量,将 最小结点的值保存 temp = 11

(5) 删除该最小结点

(6) targetNode.value = temp

public class BinarySortTreeDemo {

    public static void main(String[] args) {
        int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
        BinarySortTree binarySortTree = new BinarySortTree();
        //循环的添加结点到二叉排序树
        for(int i = 0; i< arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }
        
        //中序遍历二叉排序树
        System.out.println("中序遍历二叉排序树~");
        binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12
        
        //测试一下删除叶子结点
        
       
        binarySortTree.delNode(12);
       
     
        binarySortTree.delNode(5);
        binarySortTree.delNode(10);
        binarySortTree.delNode(2);
        binarySortTree.delNode(3);
           
        binarySortTree.delNode(9);
        binarySortTree.delNode(1);
        binarySortTree.delNode(7);
        
        
        System.out.println("root=" + binarySortTree.getRoot());
        
        
        System.out.println("删除结点后");
        binarySortTree.infixOrder();
    }

}

//创建二叉排序树
class BinarySortTree {
    private Node root;
    
    
    
    
    public Node getRoot() {
        return root;
    }

    //查找要删除的结点
    public Node search(int value) {
        if(root == null) {
            return null;
        } else {
            return root.search(value);
        }
    }
    
    //查找父结点
    public Node searchParent(int value) {
        if(root == null) {
            return null;
        } else {
            return root.searchParent(value);
        }
    }
    
    //编写方法: 
    //1. 返回的 以node 为根结点的二叉排序树的最小结点的值
    //2. 删除node 为根结点的二叉排序树的最小结点
    /**
     * 
     * @param node 传入的结点(当做二叉排序树的根结点)
     * @return 返回的 以node 为根结点的二叉排序树的最小结点的值
     */
    public int delRightTreeMin(Node node) {
        Node target = node;
        //循环的查找左子节点,就会找到最小值
        while(target.left != null) {
            target = target.left;
        }
        //这时 target就指向了最小结点
        //删除最小结点
        delNode(target.value);
        return target.value;
    }
    
    
    //删除结点
    public void delNode(int value) {
        if(root == null) {
            return;
        }else {
            //1.需求先去找到要删除的结点  targetNode
            Node targetNode = search(value);
            //如果没有找到要删除的结点
            if(targetNode == null) {
                return;
            }
            //如果我们发现当前这颗二叉排序树只有一个结点
            if(root.left == null && root.right == null) {
                root = null;
                return;
            }
            
            //去找到targetNode的父结点
            Node parent = searchParent(value);
            //如果要删除的结点是叶子结点
            if(targetNode.left == null && targetNode.right == null) {
                //判断targetNode 是父结点的左子结点,还是右子结点
                if(parent.left != null && parent.left.value == value) { //是左子结点
                    parent.left = null;
                } else if (parent.right != null && parent.right.value == value) {//是由子结点
                    parent.right = null;
                }
            } else if (targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;
                
                
            } else { // 删除只有一颗子树的结点
                //如果要删除的结点有左子结点 
                if(targetNode.left != null) {
                    if(parent != null) {
                        //如果 targetNode 是 parent 的左子结点
                        if(parent.left.value == value) {
                            parent.left = targetNode.left;
                        } else { //  targetNode 是 parent 的右子结点
                            parent.right = targetNode.left;
                        } 
                    } else {
                        root = targetNode.left;
                    }
                } else { //如果要删除的结点有右子结点 
                    if(parent != null) {
                        //如果 targetNode 是 parent 的左子结点
                        if(parent.left.value == value) {
                            parent.left = targetNode.right;
                        } else { //如果 targetNode 是 parent 的右子结点
                            parent.right = targetNode.right;
                        }
                    } else {
                        root = targetNode.right;
                    }
                }
                
            }
            
        }
    }
    
    //添加结点的方法
    public void add(Node node) {
        if(root == null) {
            root = node;//如果root为空则直接让root指向node
        } else {
            root.add(node);
        }
    }
    //中序遍历
    public void infixOrder() {
        if(root != null) {
            root.infixOrder();
        } else {
            System.out.println("二叉排序树为空,不能遍历");
        }
    }
}

//创建Node结点
class Node {
    int value;
    Node left;
    Node right;
    public Node(int value) {
        
        this.value = value;
    }
    
    
    //查找要删除的结点
    /**
     * 
     * @param value 希望删除的结点的值
     * @return 如果找到返回该结点,否则返回null
     */
    public Node search(int value) {
        if(value == this.value) { //找到就是该结点
            return this;
        } else if(value < this.value) {//如果查找的值小于当前结点,向左子树递归查找
            //如果左子结点为空
            if(this.left  == null) {
                return null;
            }
            return this.left.search(value);
        } else { //如果查找的值不小于当前结点,向右子树递归查找
            if(this.right == null) {
                return null;
            }
            return this.right.search(value);
        }
        
    }
    //查找要删除结点的父结点
    /**
     * 
     * @param value 要找到的结点的值
     * @return 返回的是要删除的结点的父结点,如果没有就返回null
     */
    public Node searchParent(int value) {
        //如果当前结点就是要删除的结点的父结点,就返回
        if((this.left != null && this.left.value == value) || 
                (this.right != null && this.right.value == value)) {
            return this;
        } else {
            //如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
            if(value < this.value && this.left != null) {
                return this.left.searchParent(value); //向左子树递归查找
            } else if (value >= this.value && this.right != null) {
                return this.right.searchParent(value); //向右子树递归查找
            } else {
                return null; // 没有找到父结点
            }
        }
        
    }
    
    @Override
    public String toString() {
        return "Node [value=" + value + "]";
    }


    //添加结点的方法
    //递归的形式添加结点,注意需要满足二叉排序树的要求
    public void add(Node node) {
        if(node == null) {
            return;
        }
        
        //判断传入的结点的值,和当前子树的根结点的值关系
        if(node.value < this.value) {
            //如果当前结点左子结点为null
            if(this.left == null) {
                this.left = node;
            } else {
                //递归的向左子树添加
                this.left.add(node);
            }
        } else { //添加的结点的值大于 当前结点的值
            if(this.right == null) {
                this.right = node;
            } else {
                //递归的向右子树添加
                this.right.add(node);
            }
            
        }
    }
    
    //中序遍历
    public void infixOrder() {
        if(this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if(this.right != null) {
            this.right.infixOrder();
        }
    }
    
}

 

以上是关于二叉排序树的主要内容,如果未能解决你的问题,请参考以下文章

二叉排序树的实现(c语言)

数据结构,二叉排序树

数据结构课程设计,二叉排序树。

java二叉排序树

数据结构与算法:树 二叉排序树(BST)

数据结构与算法:树 二叉排序树(BST)