UOJ#495新年的促销

Posted asuldb

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了UOJ#495新年的促销相关的知识,希望对你有一定的参考价值。

题目

当了数天的快乐颓废人,之后就啥也不会了;

有一个简单的dp,设(dp_{i,j,k,p})表示前(i)个物品,花费了(j)元,购买了(k)个,白嫖了(p)个;转移的话考虑当前物品是买、白嫖、还是不买也不嫖;复杂度是(O(n^3m))的,显然过不去;

考虑对于一组物品,我们如何判断用一定钱数是否能买下它们;

显然我们需要按照价格排序,之后先买便宜的物品,能买多少就尽量买多少;买到不能买了,再康康能否把剩下的物品全部白嫖即可;

即按照价格排序从小到大排序之后最优方案存在一点(k),满足(ileq k)的物品,都是买或不买;对于(i>k)的物品,都是白嫖或不嫖;

于是简单搞两个dp,(f_{i,j,k})表示前(i)个物品花(j)元买(k)个的最大收益,(g_{i,j})表示从(i)(n)物品中价值前(j)大的物品价值和;我们枚举一下分界点(k)就好了;

代码

#include<bits/stdc++.h>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
    char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
    while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=305;
struct sth{int w,v;}a[maxn];
inline int cmp(const sth &A,const sth &B){return A.v<B.v;}
int n,m,A,B;
int g[maxn][maxn],dp[2][maxn][1005],ans[1005];
int main() {
    n=read(),m=read(),A=read(),B=read();
    for(re int i=1;i<=n;i++)a[i].w=read();
    for(re int i=1;i<=n;i++)a[i].v=read();
    std::sort(a+1,a+n+1,cmp);
    memset(g[n+1],-20,sizeof(g[n+1]));g[n+1][0]=0;
    for(re int i=n;i;--i) 
        for(re int j=0;j<=n-i;++j) {
            g[i][j]=max(g[i][j],g[i+1][j]);
            g[i][j+1]=max(g[i][j+1],g[i+1][j]+a[i].w);
        }
    int o=0;
    memset(dp,-20,sizeof(dp));
    dp[0][0][0]=0;
    for(re int i=1;i<=n;i++,o^=1) {
        for(re int j=0;j<i;++j)
            for(re int k=0;k<=m;k++) {
                dp[o^1][j][k]=max(dp[o^1][j][k],dp[o][j][k]);
                if(k+a[i].v<=m)
                    dp[o^1][j+1][k+a[i].v]=max(dp[o^1][j+1][k+a[i].v],dp[o][j][k]+a[i].w);
            } 
        for(re int j=0;j<=i;++j) {
            int t=min(j/A+j/B,n-i);
            for(re int k=1;k<=m;k++)
                ans[k]=max(dp[o^1][j][k]+g[i+1][t],ans[k]);
        }
    }
    for(re int i=1;i<=m;i++) printf("%d ",ans[i]=max(ans[i],ans[i-1]));puts("");
    return 0;
}

以上是关于UOJ#495新年的促销的主要内容,如果未能解决你的问题,请参考以下文章

UOJ Contest #50: Goodbye Jihai

UOJ#67新年的毒瘤(Tarjan)

[UOJ#351]新年的叶子

UOJ67 新年的毒瘤

UOJ#351. 新年的叶子 概率期望

UOJ#460. 新年的拯救计划 构造