pandas模块 Posted 2021-03-13 randysun
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pandas模块相关的知识,希望对你有一定的参考价值。
pandas模块
pandas官方文档:https://pandas.pydata.org/pandas-docs/stable/?v=20190307135750
pandas基于Numpy,可以看成是处理文本或者表格数据。pandas中有两个主要的数据结构,其中Series数据结构类似于Numpy中的一维数组,DataFrame类似于多维表格数据结构。
pandas是python数据分析的核心模块。它主要提供了五大功能:
支持文件存取操作,支持数据库(sql)、html 、json、pickle、csv(txt、excel)、sas、stata、hdf等。
支持增删改查、切片、高阶函数、分组聚合等单表操作,以及和dict、list的互相转换。
支持多表拼接合并操作。
支持简单的绘图操作。
支持简单的统计分析操作。
一、Series数据结构
Series是一种类似于一维数组的对象,由一组数据和一组与之相关的数据标签(索引)组成。
Series比较像列表(数组)和字典的结合体
import numpy as np
import pandas as pd
df = pd.Series(0, index=['a', 'b', 'c', 'd'])
print(df)
a 0
b 0
c 0
d 0
dtype: int64
print(df.values)
[0 0 0 0]
print(df.index)
Index(['a', 'b', 'c', 'd'], dtype='object')
1.1 Series支持NumPy模块的特性(下标)
从ndarray创建Series
Series(arr)
与标量运算
df*2
两个Series运算
df1+df2
索引
df[0], df[[1,2,4]]
切片
df[0:2]
通用函数
np.abs(df)
布尔值过滤
df[df>0]
arr = np.array([1, 2, 3, 4, np.nan])
print(arr)
[ 1. 2. 3. 4. nan]
df = pd.Series(arr, index=['a', 'b', 'c', 'd', 'e'])
print(df)
a 1.0
b 2.0
c 3.0
d 4.0
e NaN
dtype: float64
print(df**2)
a 1.0
b 4.0
c 9.0
d 16.0
e NaN
dtype: float64
print(df[0])
1.0
print(df['a'])
1.0
print(df[[0, 1, 2]])
a 1.0
b 2.0
c 3.0
dtype: float64
print(df[0:2])
a 1.0
b 2.0
dtype: float64
np.sin(df)
a 0.841471
b 0.909297
c 0.141120
d -0.756802
e NaN
dtype: float64
df[df > 1]
b 2.0
c 3.0
d 4.0
dtype: float64
1.2 Series支持字典的特性(标签)
从字典创建Series
Series(dic),
in运算
’a’ in sr
键索引
sr[‘a‘], sr[[‘a‘, ‘b‘, ‘d‘]]
df = pd.Series({'a': 1, 'b': 2})
print(df)
a 1
b 2
dtype: int64
print('a' in df)
True
print(df['a'])
1
1.3 Series缺失数据处理
dropna()
过滤掉值为NaN的行
fillna()
填充缺失数据
isnull()
返回布尔数组,缺失值对应为True
notnull()
返回布尔数组,缺失值对应为False
df = pd.Series([1, 2, 3, 4, np.nan], index=['a', 'b', 'c', 'd', 'e'])
print(df)
a 1.0
b 2.0
c 3.0
d 4.0
e NaN
dtype: float64
print(df.dropna())
a 1.0
b 2.0
c 3.0
d 4.0
dtype: float64
print(df.fillna(5))
a 1.0
b 2.0
c 3.0
d 4.0
e 5.0
dtype: float64
print(df.isnull())
a False
b False
c False
d False
e True
dtype: bool
print(df.notnull())
a True
b True
c True
d True
e False
dtype: bool
二、DataFrame数据结构
DataFrame是一个表格型的数据结构,含有一组有序的列。
DataFrame可以被看做是由Series组成的字典,并且共用一个索引。
2.1 产生时间对象数组:date_range
date_range参数详解:
start
开始时间
end
结束时间
periods
时间长度
freq
时间频率,默认为‘D‘,可选H(our),W(eek),B(usiness),S(emi-)M(onth),(min)T(es), S(econd), A(year),…
dates = pd.date_range('20190101', periods=6, freq='M')
print(dates)
DatetimeIndex(['2019-01-31', '2019-02-28', '2019-03-31', '2019-04-30',
'2019-05-31', '2019-06-30'],
dtype='datetime64[ns]', freq='M')
np.random.seed(1)
arr = 10 * np.random.randn(6, 4)
print(arr)
[[ 16.24345364 -6.11756414 -5.28171752 -10.72968622]
[ 8.65407629 -23.01538697 17.44811764 -7.61206901]
[ 3.19039096 -2.49370375 14.62107937 -20.60140709]
[ -3.22417204 -3.84054355 11.33769442 -10.99891267]
[ -1.72428208 -8.77858418 0.42213747 5.82815214]
[-11.00619177 11.4472371 9.01590721 5.02494339]]
df = pd.DataFrame(arr, index=dates, columns=['c1', 'c2', 'c3', 'c4'])
df
2019-01-31
16.243454
-6.117564
-5.281718
-10.729686
2019-02-28
8.654076
-23.015387
17.448118
-7.612069
2019-03-31
3.190391
-2.493704
14.621079
-20.601407
2019-04-30
-3.224172
-3.840544
11.337694
-10.998913
2019-05-31
-1.724282
-8.778584
0.422137
5.828152
2019-06-30
-11.006192
11.447237
9.015907
5.024943
三、DataFrame属性
dtype是
查看数据类型
index
查看行序列或者索引
columns
查看各列的标签
values
查看数据框内的数据,也即不含表头索引的数据
describe
查看数据每一列的极值,均值,中位数,只可用于数值型数据
transpose
转置,也可用T来操作
sort_index
排序,可按行或列index排序输出
sort_values
按数据值来排序
# 查看数据类型
print(df2.dtypes)
0 float64
1 float64
2 float64
3 float64
dtype: object
df
2019-01-31
16.243454
-6.117564
-5.281718
-10.729686
2019-02-28
8.654076
-23.015387
17.448118
-7.612069
2019-03-31
3.190391
-2.493704
14.621079
-20.601407
2019-04-30
-3.224172
-3.840544
11.337694
-10.998913
2019-05-31
-1.724282
-8.778584
0.422137
5.828152
2019-06-30
-11.006192
11.447237
9.015907
5.024943
print(df.index)
DatetimeIndex(['2019-01-31', '2019-02-28', '2019-03-31', '2019-04-30',
'2019-05-31', '2019-06-30'],
dtype='datetime64[ns]', freq='M')
print(df.columns)
Index(['c1', 'c2', 'c3', 'c4'], dtype='object')
print(df.values)
[[ 16.24345364 -6.11756414 -5.28171752 -10.72968622]
[ 8.65407629 -23.01538697 17.44811764 -7.61206901]
[ 3.19039096 -2.49370375 14.62107937 -20.60140709]
[ -3.22417204 -3.84054355 11.33769442 -10.99891267]
[ -1.72428208 -8.77858418 0.42213747 5.82815214]
[-11.00619177 11.4472371 9.01590721 5.02494339]]
df.describe()
count
6.000000
6.000000
6.000000
6.000000
mean
2.022213
-5.466424
7.927203
-6.514830
std
9.580084
11.107772
8.707171
10.227641
min
-11.006192
-23.015387
-5.281718
-20.601407
25%
-2.849200
-8.113329
2.570580
-10.931606
50%
0.733054
-4.979054
10.176801
-9.170878
75%
7.288155
-2.830414
13.800233
1.865690
max
16.243454
11.447237
17.448118
5.828152
df.T
c1
16.243454
8.654076
3.190391
-3.224172
-1.724282
-11.006192
c2
-6.117564
-23.015387
-2.493704
-3.840544
-8.778584
11.447237
c3
-5.281718
17.448118
14.621079
11.337694
0.422137
9.015907
c4
-10.729686
-7.612069
-20.601407
-10.998913
5.828152
5.024943
# 按行标签[c1, c2, c3, c4]从大到小排序
df.sort_index(axis=0)
2019-01-31
16.243454
-6.117564
-5.281718
-10.729686
2019-02-28
8.654076
-23.015387
17.448118
-7.612069
2019-03-31
3.190391
-2.493704
14.621079
-20.601407
2019-04-30
-3.224172
-3.840544
11.337694
-10.998913
2019-05-31
-1.724282
-8.778584
0.422137
5.828152
2019-06-30
-11.006192
11.447237
9.015907
5.024943
# 按列标签[2019-01-01, 2019-01-02...]从大到小排序
df.sort_index(axis=1)
2019-01-31
16.243454
-6.117564
-5.281718
-10.729686
2019-02-28
8.654076
-23.015387
17.448118
-7.612069
2019-03-31
3.190391
-2.493704
14.621079
-20.601407
2019-04-30
-3.224172
-3.840544
11.337694
-10.998913
2019-05-31
-1.724282
-8.778584
0.422137
5.828152
2019-06-30
-11.006192
11.447237
9.015907
5.024943
# 按c2列的值从大到小排序
df.sort_values(by='c2')
2019-02-28
8.654076
-23.015387
17.448118
-7.612069
2019-05-31
-1.724282
-8.778584
0.422137
5.828152
2019-01-31
16.243454
-6.117564
-5.281718
-10.729686
2019-04-30
-3.224172
-3.840544
11.337694
-10.998913
2019-03-31
3.190391
-2.493704
14.621079
-20.601407
2019-06-30
-11.006192
11.447237
9.015907
5.024943
四、DataFrame取值
df
2019-01-31
16.243454
-6.117564
-5.281718
-10.729686
2019-02-28
8.654076
-23.015387
17.448118
-7.612069
2019-03-31
3.190391
-2.493704
14.621079
-20.601407
2019-04-30
-3.224172
-3.840544
11.337694
-10.998913
2019-05-31
-1.724282
-8.778584
0.422137
5.828152
2019-06-30
-11.006192
11.447237
9.015907
5.024943
4.1 通过columns取值
df['c2']
2019-01-31 -6.117564
2019-02-28 -23.015387
2019-03-31 -2.493704
2019-04-30 -3.840544
2019-05-31 -8.778584
2019-06-30 11.447237
Freq: M, Name: c2, dtype: float64
df[['c2', 'c3']]
2019-01-31
-6.117564
-5.281718
2019-02-28
-23.015387
17.448118
2019-03-31
-2.493704
14.621079
2019-04-30
-3.840544
11.337694
2019-05-31
-8.778584
0.422137
2019-06-30
11.447237
9.015907
4.2 loc(通过行标签取值)
# 通过自定义的行标签选择数据
df.loc['2019-01-01':'2019-01-03']
df[0:3]
2019-01-31
16.243454
-6.117564
-5.281718
-10.729686
2019-02-28
8.654076
-23.015387
17.448118
-7.612069
2019-03-31
3.190391
-2.493704
14.621079
-20.601407
4.3 iloc(类似于numpy数组取值)
df.values
array([[ 16.24345364, -6.11756414, -5.28171752, -10.72968622],
[ 8.65407629, -23.01538697, 17.44811764, -7.61206901],
[ 3.19039096, -2.49370375, 14.62107937, -20.60140709],
[ -3.22417204, -3.84054355, 11.33769442, -10.99891267],
[ -1.72428208, -8.77858418, 0.42213747, 5.82815214],
[-11.00619177, 11.4472371 , 9.01590721, 5.02494339]])
# 通过行索引选择数据
print(df.iloc[2, 1])
-2.493703754774101
df.iloc[1:4, 1:4]
2019-02-28
-23.015387
17.448118
-7.612069
2019-03-31
-2.493704
14.621079
-20.601407
2019-04-30
-3.840544
11.337694
-10.998913
4.4 使用逻辑判断取值
df[df['c1'] > 0]
2019-01-31
16.243454
-6.117564
-5.281718
-10.729686
2019-02-28
8.654076
-23.015387
17.448118
-7.612069
2019-03-31
3.190391
-2.493704
14.621079
-20.601407
df[(df['c1'] > 0) & (df['c2'] > -8)]
2019-01-31
16.243454
-6.117564
-5.281718
-10.729686
2019-03-31
3.190391
-2.493704
14.621079
-20.601407
五、DataFrame值替换
df
2019-01-31
16.243454
-6.117564
-5.281718
-10.729686
2019-02-28
8.654076
-23.015387
17.448118
-7.612069
2019-03-31
3.190391
-2.493704
14.621079
-20.601407
2019-04-30
-3.224172
-3.840544
11.337694
-10.998913
2019-05-31
-1.724282
-8.778584
0.422137
5.828152
2019-06-30
-11.006192
11.447237
9.015907
5.024943
df.iloc[0:3, 0:2] = 0
df
2019-01-31
0.000000
0.000000
-5.281718
-10.729686
2019-02-28
0.000000
0.000000
17.448118
-7.612069
2019-03-31
0.000000
0.000000
14.621079
-20.601407
2019-04-30
-3.224172
-3.840544
11.337694
-10.998913
2019-05-31
-1.724282
-8.778584
0.422137
5.828152
2019-06-30
-11.006192
11.447237
9.015907
5.024943
df['c3'] > 10
2019-01-31 False
2019-02-28 True
2019-03-31 True
2019-04-30 True
2019-05-31 False
2019-06-30 False
Freq: M, Name: c3, dtype: bool
# 针对行做处理
df[df['c3'] > 10] = 100
df
2019-01-31
0.000000
0.000000
-5.281718
-10.729686
2019-02-28
100.000000
100.000000
100.000000
100.000000
2019-03-31
100.000000
100.000000
100.000000
100.000000
2019-04-30
100.000000
100.000000
100.000000
100.000000
2019-05-31
-1.724282
-8.778584
0.422137
5.828152
2019-06-30
-11.006192
11.447237
9.015907
5.024943
# 针对行做处理
df = df.astype(np.int32)
df[df['c3'].isin([100])] = 1000
df
2019-01-31
0
0
-5
-10
2019-02-28
1000
1000
1000
1000
2019-03-31
1000
1000
1000
1000
2019-04-30
1000
1000
1000
1000
2019-05-31
-1
-8
0
5
2019-06-30
-11
11
9
5
六、读取CSV文件
import pandas as pd
from io import StringIO
test_data = '''
5.1,,1.4,0.2
4.9,3.0,1.4,0.2
4.7,3.2,,0.2
7.0,3.2,4.7,1.4
6.4,3.2,4.5,1.5
6.9,3.1,4.9,
,,,
'''
test_data = StringIO(test_data)
df = pd.read_csv(test_data, header=None)
df.columns = ['c1', 'c2', 'c3', 'c4']
df
0
5.1
NaN
1.4
0.2
1
4.9
3.0
1.4
0.2
2
4.7
3.2
NaN
0.2
3
7.0
3.2
4.7
1.4
4
6.4
3.2
4.5
1.5
5
6.9
3.1
4.9
NaN
6
NaN
NaN
NaN
NaN
七、处理丢失数据
df.isnull()
0
False
True
False
False
1
False
False
False
False
2
False
False
True
False
3
False
False
False
False
4
False
False
False
False
5
False
False
False
True
6
True
True
True
True
# 通过在isnull()方法后使用sum()方法即可获得该数据集某个特征含有多少个缺失值
print(df.isnull().sum())
c1 1
c2 2
c3 2
c4 2
dtype: int64
# axis=0删除有NaN值的行
df.dropna(axis=0)
1
4.9
3.0
1.4
0.2
3
7.0
3.2
4.7
1.4
4
6.4
3.2
4.5
1.5
# axis=1删除有NaN值的列
df.dropna(axis=1)
# 删除全为NaN值得行或列
df.dropna(how='all')
0
5.1
NaN
1.4
0.2
1
4.9
3.0
1.4
0.2
2
4.7
3.2
NaN
0.2
3
7.0
3.2
4.7
1.4
4
6.4
3.2
4.5
1.5
5
6.9
3.1
4.9
NaN
# 删除行不为4个值的
df.dropna(thresh=4)
1
4.9
3.0
1.4
0.2
3
7.0
3.2
4.7
1.4
4
6.4
3.2
4.5
1.5
# 删除c2中有NaN值的行
df.dropna(subset=['c2'])
1
4.9
3.0
1.4
0.2
2
4.7
3.2
NaN
0.2
3
7.0
3.2
4.7
1.4
4
6.4
3.2
4.5
1.5
5
6.9
3.1
4.9
NaN
# 填充nan值
df.fillna(value=10)
0
5.1
10.0
1.4
0.2
1
4.9
3.0
1.4
0.2
2
4.7
3.2
10.0
0.2
3
7.0
3.2
4.7
1.4
4
6.4
3.2
4.5
1.5
5
6.9
3.1
4.9
10.0
6
10.0
10.0
10.0
10.0
八、合并数据
df1 = pd.DataFrame(np.zeros((3, 4)))
df1
0
0.0
0.0
0.0
0.0
1
0.0
0.0
0.0
0.0
2
0.0
0.0
0.0
0.0
df2 = pd.DataFrame(np.ones((3, 4)))
df2
0
1.0
1.0
1.0
1.0
1
1.0
1.0
1.0
1.0
2
1.0
1.0
1.0
1.0
# axis=0合并列
pd.concat((df1, df2), axis=0)
0
0.0
0.0
0.0
0.0
1
0.0
0.0
0.0
0.0
2
0.0
0.0
0.0
0.0
0
1.0
1.0
1.0
1.0
1
1.0
1.0
1.0
1.0
2
1.0
1.0
1.0
1.0
# axis=1合并行
pd.concat((df1, df2), axis=1)
0
0.0
0.0
0.0
0.0
1.0
1.0
1.0
1.0
1
0.0
0.0
0.0
0.0
1.0
1.0
1.0
1.0
2
0.0
0.0
0.0
0.0
1.0
1.0
1.0
1.0
# append只能合并列
df1.append(df2)
0
0.0
0.0
0.0
0.0
1
0.0
0.0
0.0
0.0
2
0.0
0.0
0.0
0.0
0
1.0
1.0
1.0
1.0
1
1.0
1.0
1.0
1.0
2
1.0
1.0
1.0
1.0
九、导入导出数据
使用df = pd.read_excel(filename)读取文件,使用df.to_excel(filename)保存文件。
9.1 读取文件导入数据
读取文件导入数据函数主要参数:
sep
指定分隔符,可用正则表达式如‘s+‘
header=None
指定文件无行名
name
指定列名
index_col
指定某列作为索引
skip_row
指定跳过某些行
na_values
指定某些字符串表示缺失值
parse_dates
指定某些列是否被解析为日期,布尔值或列表
df = pd.read_excel(filename)
df = pd.read_csv(filename)
9.2 写入文件导出数据
写入文件函数的主要参数:
sep
分隔符
na_rep
指定缺失值转换的字符串,默认为空字符串
header=False
不保存列名
index=False
不保存行索引
cols
指定输出的列,传入列表
df.to_excel(filename)
十、pandas读取json文件
strtext = '[{"ttery":"min","issue":"20130801-3391","code":"8,4,5,2,9","code1":"297734529","code2":null,"time":1013395466000},{"ttery":"min","issue":"20130801-3390","code":"7,8,2,1,2","code1":"298058212","code2":null,"time":1013395406000},{"ttery":"min","issue":"20130801-3389","code":"5,9,1,2,9","code1":"298329129","code2":null,"time":1013395346000},{"ttery":"min","issue":"20130801-3388","code":"3,8,7,3,3","code1":"298588733","code2":null,"time":1013395286000},{"ttery":"min","issue":"20130801-3387","code":"0,8,5,2,7","code1":"298818527","code2":null,"time":1013395226000}]'
df = pd.read_json(strtext, orient='records')
df
0
8,4,5,2,9
297734529
NaN
20130801-3391
1013395466000
min
1
7,8,2,1,2
298058212
NaN
20130801-3390
1013395406000
min
2
5,9,1,2,9
298329129
NaN
20130801-3389
1013395346000
min
3
3,8,7,3,3
298588733
NaN
20130801-3388
1013395286000
min
4
0,8,5,2,7
298818527
NaN
20130801-3387
1013395226000
min
df.to_excel('pandas处理json.xlsx',
index=False,
columns=["ttery", "issue", "code", "code1", "code2", "time"])
10.1 orient参数的五种形式
orient是表明预期的json字符串格式。orient的设置有以下五个值:
1.‘split‘ : dict like {index -> [index], columns -> [columns], data -> [values]}
这种就是有索引,有列字段,和数据矩阵构成的json格式。key名称只能是index,columns和data。
s = '{"index":[1,2,3],"columns":["a","b"],"data":[[1,3],[2,8],[3,9]]}'
df = pd.read_json(s, orient='split')
df
2.‘records‘ : list like [{column -> value}, ... , {column -> value}]
这种就是成员为字典的列表。如我今天要处理的json数据示例所见。构成是列字段为键,值为键值,每一个字典成员就构成了dataframe的一行数据。
strtext = '[{"ttery":"min","issue":"20130801-3391","code":"8,4,5,2,9","code1":"297734529","code2":null,"time":1013395466000},{"ttery":"min","issue":"20130801-3390","code":"7,8,2,1,2","code1":"298058212","code2":null,"time":1013395406000}]'
df = pd.read_json(strtext, orient='records')
df
0
8,4,5,2,9
297734529
NaN
20130801-3391
1013395466000
min
1
7,8,2,1,2
298058212
NaN
20130801-3390
1013395406000
min
3.‘index‘ : dict like {index -> {column -> value}}
以索引为key,以列字段构成的字典为键值。如:
s = '{"0":{"a":1,"b":2},"1":{"a":9,"b":11}}'
df = pd.read_json(s, orient='index')
df
4.‘columns‘ : dict like {column -> {index -> value}}
这种处理的就是以列为键,对应一个值字典的对象。这个字典对象以索引为键,以值为键值构成的json字符串。如下图所示:
s = '{"a":{"0":1,"1":9},"b":{"0":2,"1":11}}'
df = pd.read_json(s, orient='columns')
df
5.‘values‘ : just the values array。
values这种我们就很常见了。就是一个嵌套的列表。里面的成员也是列表,2层的。
s = '[["a",1],["b",2]]'
df = pd.read_json(s, orient='values')
df
十一、pandas读取sql语句
import numpy as np
import pandas as pd
import pymysql
def conn(sql):
# 连接到mysql数据库
conn = pymysql.connect(
host="localhost",
port=3306,
user="root",
passwd="123",
db="db1",
)
try:
data = pd.read_sql(sql, con=conn)
return data
except Exception as e:
print("SQL is not correct!")
finally:
conn.close()
sql = "select * from test1 limit 0, 10" # sql语句
data = conn(sql)
print(data.columns.tolist()) # 查看字段
print(data) # 查看数据
以上是关于pandas模块的主要内容,如果未能解决你的问题,请参考以下文章
pandas GroupBy上的方法apply:一般性的“拆分-应用-合并”
ModuleNotFoundError:vs 代码中没有名为“pandas”的模块
如何有条件地将 C 代码片段编译到我的 Perl 模块?
text [检查特定的数据片段]取自论文但有意思应用。 #python #pandas
安装部分 pandas 模块
CTS测试CtsWindowManagerDeviceTestCases模块的testShowWhenLockedImeActivityAndShowSoftInput测试fail项解决方法(代码片段