2020/2/1寒假自学——学习进度报告8

Posted limitcm

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2020/2/1寒假自学——学习进度报告8相关的知识,希望对你有一定的参考价值。

  开始尝试sparkSQL的尝试编程。


  SparkSQL总体来说就是spark中的hive,但麻烦的一点是spark官网下载的并不自带对hive的支持,所以不能使用外部的hive。之后解决。

  所以这次主要关注dataframe的编程。

  首先创建了一个json文件用来创建DataFrame,内容为:

{ "id":1 , "name":" Ella" , "age":36 }

{ "id":2, "name":"Bob","age":29 }

{ "id":3 , "name":"Jack","age":29 }

{ "id":4 , "name":"Jim","age":28 }

{ "id":4 , "name":"Jim","age":28 }

{ "id":5 , "name":"Damon" }

{ "id":5 , "name":"Damon" } 

  编写程序的开头。

import findspark

findspark.init()

from pyspark.sql import SparkSession

spark = SparkSession.builder.getOrCreate()

  SparkSession是sparksql的入口。

  然后就是可以进行操作。

  显示所有数据:

df=spark.read.json("file:///usr/local/spark/mycode/exp5/employee.json")
df.show()

  技术图片

 

   排序:

df = spark.read.json("file:///usr/local/spark/mycode/exp5/employee.json")
df.sort(df.age.desc()).show()

  技术图片

   求均值:

df = spark.read.json("file:///usr/local/spark/mycode/exp5/employee.json")
df.groupBy().avg("age").show()

  技术图片

   值得一提,python中的dataframe可以直接调用其中的列作为迭代器,但只能作为dataframe函数的参数。看了源代码之后发现dataframe函数和groupBy之后的函数不一样,就想avg、max等函数只有在groupBy之后才能使用,但这时不能使用迭代器(也就是df.age这类),只能使用string。

   具体函数可以参考文档。

  在值得一提,发现一个很有用的功能。

df.agg({"age": "max"}).show()

from
pyspark.sql import functions as F df.agg(F.min(df.age)).show()

  agg(*exprs)[source]这个函数可以免去group的麻烦()。

以上是关于2020/2/1寒假自学——学习进度报告8的主要内容,如果未能解决你的问题,请参考以下文章

2020/1/27寒假自学——学习进度报告7

2020/2/13寒假自学——学习进度报告16

2020/1/25寒假自学——学习进度报告6

2020/1/24寒假自学——学习进度报告5

2020/1/18寒假自学——学习进度报告3

寒假自学进度8