6-10 Strongly Connected Components (30分)

Posted 8023spz

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了6-10 Strongly Connected Components (30分)相关的知识,希望对你有一定的参考价值。

Write a program to find the strongly connected components in a digraph.

Format of functions:

void StronglyConnectedComponents( Graph G, void (*visit)(Vertex V) );
 

where Graph is defined as the following:

typedef struct VNode *PtrToVNode;
struct VNode {
    Vertex Vert;
    PtrToVNode Next;
};
typedef struct GNode *Graph;
struct GNode {
    int NumOfVertices;
    int NumOfEdges;
    PtrToVNode *Array;
};
 

Here void (*visit)(Vertex V) is a function parameter that is passed into StronglyConnectedComponents to handle (print with a certain format) each vertex that is visited. The function StronglyConnectedComponents is supposed to print a return after each component is found.

Sample program of judge:

#include <stdio.h>
#include <stdlib.h>

#define MaxVertices 10  /* maximum number of vertices */
typedef int Vertex;     /* vertices are numbered from 0 to MaxVertices-1 */
typedef struct VNode *PtrToVNode;
struct VNode {
    Vertex Vert;
    PtrToVNode Next;
};
typedef struct GNode *Graph;
struct GNode {
    int NumOfVertices;
    int NumOfEdges;
    PtrToVNode *Array;
};

Graph ReadG(); /* details omitted */

void PrintV( Vertex V )
{
   printf("%d ", V);
}

void StronglyConnectedComponents( Graph G, void (*visit)(Vertex V) );

int main()
{
    Graph G = ReadG();
    StronglyConnectedComponents( G, PrintV );
    return 0;
}

/* Your function will be put here */

 

Sample Input (for the graph shown in the figure):

技术图片

4 5
0 1
1 2
2 0
3 1
3 2
 

Sample Output:

3 
1 2 0 
 

Note: The output order does not matter. That is, a solution like

0 1 2 
3 
 

is also considered correct.

 

找图的强连通分量,题目中的建图的函数没给出定义,实际使用邻接表。

由于边数很少可以考虑先求所有边可达矩阵,mp[i][j]为1,表示存在i到j的路径,可以用邻接矩阵的n次方求得。然后排着判断即可,一个强连通分量里的点必定都是相互可达的。

代码:

#include <stdio.h>
#include <stdlib.h>

#define MaxVertices 10  /* maximum number of vertices */
typedef int Vertex;     /* vertices are numbered from 0 to MaxVertices-1 */
typedef struct VNode *PtrToVNode;
struct VNode {
    Vertex Vert;
    PtrToVNode Next;
};
typedef struct GNode *Graph;
struct GNode {
    int NumOfVertices;
    int NumOfEdges;
    PtrToVNode *Array;
};

Graph ReadG() { /* details omitted */
    int a,b;
    Graph G = (Graph)malloc(sizeof(GNode));
    scanf("%d%d",&G -> NumOfVertices,&G -> NumOfEdges);
    G -> Array = (PtrToVNode *)malloc(sizeof(PtrToVNode) * G -> NumOfVertices);
    for(int i = 0;i < G -> NumOfVertices;i ++) {
        G -> Array[i] = NULL;
    }
    for(int i = 0;i < G -> NumOfEdges;i ++) {
        scanf("%d%d",&a,&b);
        PtrToVNode p = (PtrToVNode)malloc(sizeof(VNode));
        p -> Vert = b;
        p -> Next = G -> Array[a];
        G -> Array[a] = p;
    }
    return G;
}

void PrintV( Vertex V ) {
   printf("%d ", V);
}

void StronglyConnectedComponents( Graph G, void (*visit)(Vertex V) );

int main() {
    Graph G = ReadG();
    StronglyConnectedComponents( G, PrintV );
    return 0;
}

/* Your function will be put here */
void StronglyConnectedComponents( Graph G, void (*visit)(Vertex V) ) {
    int mp[MaxVertices][MaxVertices] = {0},num = G -> NumOfVertices;
    int vis[MaxVertices] = {0};
    for(int i = 0;i < num;i ++) {
        PtrToVNode p = G -> Array[i];
        while(p) {
            mp[i][p -> Vert] = 1;
            p = p -> Next;
        }
    }
    for(int i = 0;i < num;i ++) {
        for(int j = 0;j < num;j ++) {
            for(int k = 0;k < num;k ++) {
                if(mp[i][k] && mp[k][j]) mp[i][j] = 1;
            }
        }
    }
    for(int i = 0;i < num;i ++) {
        if(vis[i]) continue;
        visit(i);
        vis[i] = 1;
        for(int j = 0;j < num;j ++) {
            if(!vis[j] && mp[i][j] && mp[j][i]) {
                vis[j] = 1;
                visit(j);
            }
        }
        putchar(
);
    }
}

 

以上是关于6-10 Strongly Connected Components (30分)的主要内容,如果未能解决你的问题,请参考以下文章

algorithm@ Strongly Connected Component

Strongly connected components

PTA Strongly Connected Components

HDU 4635 Strongly connected(强连通)经典

hdu 4635 Strongly connected (tarjan)

HDU 4635 Strongly connected 强连通分量