WholeFileInputFormat 和WholeFileRecordReader合并小文件

Posted bclshuai

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了WholeFileInputFormat 和WholeFileRecordReader合并小文件相关的知识,希望对你有一定的参考价值。

 

如果不希望文件被切分,例如判断文件中记录是否有序,可以让minimumSize值大于最大文件的大小,但是文件的大小不能超过blockSize,或者重写FileInputFormat方法isSplitable()返回为false。下面介绍将多个小文件合成一个大的序列文件的例子:

1)自定义完整文件输入处理类如下:

Public class WholeFileInputFormat extends FileInputFormat<NullWritable, ByteWritable>

{

@override//不得分片

protected boolean isSplitable(JobContext context,Path file){return false;}

       @override

       public RecordReader<NullWritable,BytesWritable> createRecordReader ( InputSplit split,TaskAttemptContext context )throws IOException,InterruptedException

{

  WholeFileRecordReader reader=new WholeFileRecordReader();

  reader.initialize(split,context);

  return reader;

}

}

2)自定义完整文件读取类WholeFileRecordReader

WholeFileRecordReader类通过initialize()方法传入文件信息,然后调用nextKeyValue()方法一次性读取整个文件的内容,通过布尔值processed判断是否读取执行过。其他函数都是返回值。将FileSplit转为一条记录,键为null,值为文件内容。

package org.edu.bupt.xiaoye.hadooptest;

 

import java.io.IOException;

 

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FSDataInputStream;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.BytesWritable;

import org.apache.hadoop.io.IOUtils;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.mapreduce.InputSplit;

import org.apache.hadoop.mapreduce.RecordReader;

import org.apache.hadoop.mapreduce.TaskAttemptContext;

import org.apache.hadoop.mapreduce.lib.input.FileSplit;

 

/**

 * 继承RecordReader

 * 该类用来将分片分割成记录,从而生成key和value。例如TextInputFormat中的key和value就是RecordReader的子类产生的。

 * 在这里,我们继承了这个类,将重写了key和value的生成算法。对一个分片来说,只生成一个key-value对。其中key为空,value为该分片

 * 的所有内容

 * @author Xiaoye

 */

public class WholeFileRecordReader extends

              RecordReader<NullWritable, BytesWritable> {

       // 用来盛放传递过来的分片

       private FileSplit fileSplit;

       private Configuration conf;

       //将作为key-value中的value值返回

       private BytesWritable value = new BytesWritable();

       // 因为只生成一条记录,所以只需要调用一次。因此第一次调用过后将processed赋值为true,从而结束key和value的生成

       private boolean processed = false;

 

       /**

        * 设置RecordReader的分片和配置对象。

        */

       @Override

       public void initialize(InputSplit split, TaskAttemptContext context)

                     throws IOException, InterruptedException {

              this.fileSplit = (FileSplit) split;

              this.conf = context.getConfiguration();

       }

 

       /**

        * 核心算法

        * 用来产生key-value值

        * 一次读取整个文件内容注入value对象

        */

       @Override

       public boolean nextKeyValue() throws IOException, InterruptedException {

              if (!processed) {

                     /*

                      * 注意这儿,fileSplit中只是存放着待处理内容的位置 大小等信息,并没有实际的内容

                      * 因此这里会通过fileSplit找到待处理文件,然后再读入内容到value中

                      */

                     byte[] contents = new byte[(int) fileSplit.getLength()];

                     Path file = fileSplit.getPath();

                     FileSystem fs = file.getFileSystem(conf);

                     FSDataInputStream in = null;

                     try {

                            in = fs.open(file);

                            IOUtils.readFully(in, contents, 0, contents.length);

                            value.set(contents, 0, contents.length);

                     } finally {

                            IOUtils.closeStream(in);

                     }

                     processed = true;

                     return true;

              }

              return false;

       }

 

       @Override

       public NullWritable getCurrentKey() throws IOException,

                     InterruptedException {

              return NullWritable.get();

       }

 

       @Override

       public BytesWritable getCurrentValue() throws IOException,

                     InterruptedException {

              return value;

       }

 

       @Override

       public float getProgress() throws IOException, InterruptedException {

              return processed ? 1.0f : 0.0f;

       }

 

       @Override

       public void close() throws IOException {

              //do nothing

       }

3)将若干个小文件打包成顺序文件的mapreduce作业

通过WholeFileRecordReader类读取所有小文件的内容,以文件名称为输出键,以内容未一条记录,然后合并成一个大的顺序文件。

public class SmallFilesToSequenceFileConverter extends configured implement Tool

{

       package com.pzoom.mr.sequence;

 

import java.io.IOException;

import java.util.Random;

 

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.BytesWritable;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.InputSplit;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.FileSplit;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;

 

public class SmallFilesToSequenceFileConverter {

///定义map函数

       static class SequenceFileMapper extends Mapper<NullWritable, BytesWritable, Text, BytesWritable> {

              private Text filenameKey;

              //定义设置文件函数

              @Override

              protected void setup(Context context) throws IOException,

              InterruptedException {

                     InputSplit split = context.getInputSplit();

                     Path path = ((FileSplit)split).getPath();

                     filenameKey = new Text(path.toString());

              }

 //定义map函数

              @Override

              protected void map(NullWritable key, BytesWritable value,

                            Context context) throws IOException, InterruptedException {

                     context.write(filenameKey, value);

              }

//定义run函数

@Override

public int run (String[] args)throws IOException {

       Configuration conf = getConf();

       if(conf==null)

{

       return -1;

}

       Job job=JobBuilder.parseInputAndOutput(this,conf,args);

              job.setInputFormatClass(WholeFileInputFormat.class);

              job.setOutputFormatClass(SequenceFileOutputFormat.class);输出序列file

              job.setOutputKeyClass(Text.class);

              job.setOutputValueClass(BytesWritable.class);

              job.setMapperClass(SequenceFileMapper.class);

             

              return job.waitForCompletion(true)? 0:1;}

//args传入输入输出路径

 public static void main(String[] args) throws IOException{

              int exitCode=ToolRunner.run(new SmallFilesToSequenceFileConverter(),args);

System.exit(exitCode);

                     }

}

}

4)执行小文件合并为大文件的命令

各参数含义:采用本地配置文件,两个reduces任务,输入文件夹,输出文件夹

%hadoop jar job.jar SmallFilesToSequenceFileConverter –conf conf/Hadoop-localhost.xml –D mapreduece.job.reduces-2 input/smallfiles output

5)通过命令来查看输出结果

%hadoop fs –conf conf/Hadoop-localhost.xml –text output/part-r-00000

 

输出结果是以小文件路径为键,以内容为值的合并序列文件

 

自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取:

https://www.cnblogs.com/bclshuai/p/11380657.html

以上是关于WholeFileInputFormat 和WholeFileRecordReader合并小文件的主要内容,如果未能解决你的问题,请参考以下文章

who的所有中文解释

Linux中who命令详解

Linux who命令详解

who - 显示已经登录的用户

"who"-"who am i"-"whoami"命令

linux下 who命令