点云配准(Registration)算法——以PCL为例

Posted gdut-gordon

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了点云配准(Registration)算法——以PCL为例相关的知识,希望对你有一定的参考价值。

本文为PCL官方教程的Registration模块的中文简介版。

 

An Overview of Pairwise Registration

技术图片

 

点云配准包括以下步骤:

  • from a set of points, identify interest points (i.e., keypoints) that best represent the scene in both datasets;
  • at each keypoint, compute a feature descriptor;
  • from the set of feature descriptors together with their XYZ positions in the two datasets, estimate a set of correspondences, based on the similarities between features and positions;
  • given that the data is assumed to be noisy, not all correspondences are valid, so reject those bad correspondences that contribute negatively to the registration process;
  • from the remaining set of good correspondences, estimate a motion transformation.

 

针对上述每一个步骤,PCL的registration模块提供了多种算法进行实现 。

Keypoint

诸如 NARF, SIFT and FAST。

 

Feature descriptors

诸如NARF, FPFH, BRIEF or SIFT。

 

Correspondences Estimation

point matching

  • brute force matching,

  • kd-tree nearest neighbor search (FLANN),

  • searching in the image space of organized data, and

  • searching in the index space of organized data.

feature matching

  • brute force matching and

  • kd-tree nearest neighbor search (FLANN).

 

Corresdondences Rejection

使用RANSAC,或者剪出多余数据。

 

Transformation Estimation

诸如 SVD for motion estimate; - Levenberg-Marquardt with different kernels for motion estimate。

 

算法案例

其中(1)和(2)是point matching,(3)是feature matching。

(1)ICP

ICP的使用SVD求解转换矩阵,其参考文章:

Least-Squares Estimation of Transformation Parameters Between Two Point Patterns

 

(2)NDT

参考论文:

1. The Three-Dimensional Normal-Distributions Transform an Efficient Representation for Registration, Surface Analysis, and Loop Detection. MARTIN MAGNUSSON doctoral dissertation。

2. Line Search Algorithm with Guaranteed Sufficient Decrease. 计算迭代步长。

 

(3)改进版RANSAC

参考论文:

Pose Estimation using Local Structure-Specific Shape and Appearance Context. ICRA 2013.

以上是关于点云配准(Registration)算法——以PCL为例的主要内容,如果未能解决你的问题,请参考以下文章

PCL学习总结点云配准算法之ICP系列

ICP点云配准原理及优化

PCL学习总结点云配准算法之NDT

点云配准的传统算法ICP与NDT概述

3D,点云拼接2

点云配准 6 -pcl如何使用正态分布变换进行配准