点云配准(Registration)算法——以PCL为例
Posted gdut-gordon
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了点云配准(Registration)算法——以PCL为例相关的知识,希望对你有一定的参考价值。
本文为PCL官方教程的Registration模块的中文简介版。
An Overview of Pairwise Registration
点云配准包括以下步骤:
- from a set of points, identify interest points (i.e., keypoints) that best represent the scene in both datasets;
- at each keypoint, compute a feature descriptor;
- from the set of feature descriptors together with their XYZ positions in the two datasets, estimate a set of correspondences, based on the similarities between features and positions;
- given that the data is assumed to be noisy, not all correspondences are valid, so reject those bad correspondences that contribute negatively to the registration process;
- from the remaining set of good correspondences, estimate a motion transformation.
针对上述每一个步骤,PCL的registration模块提供了多种算法进行实现 。
Keypoint
诸如 NARF, SIFT and FAST。
Feature descriptors
诸如NARF, FPFH, BRIEF or SIFT。
Correspondences Estimation
point matching
-
brute force matching,
-
kd-tree nearest neighbor search (FLANN),
-
searching in the image space of organized data, and
-
searching in the index space of organized data.
feature matching
-
brute force matching and
-
kd-tree nearest neighbor search (FLANN).
Corresdondences Rejection
使用RANSAC,或者剪出多余数据。
Transformation Estimation
诸如 SVD for motion estimate; - Levenberg-Marquardt with different kernels for motion estimate。
算法案例
其中(1)和(2)是point matching,(3)是feature matching。
(1)ICP
ICP的使用SVD求解转换矩阵,其参考文章:
Least-Squares Estimation of Transformation Parameters Between Two Point Patterns
(2)NDT
参考论文:
1. The Three-Dimensional Normal-Distributions Transform an Efficient Representation for Registration, Surface Analysis, and Loop Detection. MARTIN MAGNUSSON doctoral dissertation。
2. Line Search Algorithm with Guaranteed Sufficient Decrease. 计算迭代步长。
(3)改进版RANSAC
参考论文:
Pose Estimation using Local Structure-Specific Shape and Appearance Context. ICRA 2013.
以上是关于点云配准(Registration)算法——以PCL为例的主要内容,如果未能解决你的问题,请参考以下文章