多元线性回归的理解

Posted feng-fengfeng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了多元线性回归的理解相关的知识,希望对你有一定的参考价值。

之前我们讨论过一个线性回归的,里面是关于房屋售价和面积之间的关系,这个例子中特征只有一个,就是面积。

现在我们继续来讨论如果出现多个特征,通常情况下也是如此,人们在收售房屋时会考虑多个因素,比如新旧程度、地理位置、卧室数量、布局等等。这时特征数量不再是单一的,而是出现多个。

 

给出以下例子,考虑房屋面积、卧室数量、房屋年龄三个因素。

技术图片


我们用 n 代表特征数量,m 代表样本数量,变量 x 此时也变为三个,即 x(代表面积),x2(代表卧室数量),x3(代表房屋年龄)。

定义 x(i)  代表第 i 个样本的所有特征值。例如 x(2)  = [1416, 3, 2, 40, 232] 

定义 xj(i)  代表第 i 个样本中第 j 个特征量。例如 x3(2) = 2 

在这个例子中假设函数就为 h(θ) (x) = θ0 + θ1x1 + θ2x2 + θ3x3 ,我们令 x0 =  1, 可以得到 h(θ) (x) = θ0x0 + θ1x1 + θ2x2 + θ3x

所以当特征有 n 个时, h(θ) (x) = ΘTX ,这就是多元线性回归的假设函数。

 

以上是关于多元线性回归的理解的主要内容,如果未能解决你的问题,请参考以下文章

数学建模天天学_第四天_多元线性回归模型

如何利用多元线性回归分析确定权重系数

回归分析 R语言 -- 多元线性回归

多元线性回归中自变量减少预测误差变大回归平方怎么变化

多元线性回归公式的计算方法?

多元线性回归 协整检验怎么做?