TensorFlow keras 迁移学习
Posted liuxinyu12378
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TensorFlow keras 迁移学习相关的知识,希望对你有一定的参考价值。
数据的读取
import tensorflow as tf from tensorflow.python import keras from tensorflow.python.keras.preprocessing.image import ImageDataGenerator class TransferModel(object): def __init__(self): #标准化和数据增强 self.train_generator = ImageDataGenerator(rescale=1.0/255.0) self.test_generator = ImageDataGenerator(rescale=1.0/255.0) #指定训练集数据和测试集数据目录 self.train_dir = "./data/train" self.test_dir = "./data/test" self.image_size = (224,224) self.batch_size = 32 def get_loacl_data(self): ‘‘‘ 读取本地的图片数据以及类别 :return: ‘‘‘ train_gen = self.train_generator.flow_from_directory(self.train_dir, target_size=self.image_size, batch_size=self.batch_size, class_mode=‘binary‘, shuffle=True) test_gen = self.test_generator.flow_from_directory(self.test_dir, target_size=self.image_size, batch_size=self.batch_size, class_mode=‘binary‘, shuffle=True) return train_gen,test_gen if __name__ == ‘__main__‘: tm = TransferModel() train_gen,test_gen = tm.get_loacl_data() print(train_gen)
迁移学习完整代码
import tensorflow as tf from tensorflow.python import keras from tensorflow.python.keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array from tensorflow.python.keras.applications.vgg16 import VGG16, preprocess_input import numpy as np class TransferModel(object): def __init__(self): # 定义训练和测试图片的变化方法,标准化以及数据增强 self.train_generator = ImageDataGenerator(rescale=1.0 / 255.0) self.test_generator = ImageDataGenerator(rescale=1.0 / 255.0) # 指定训练数据和测试数据的目录 self.train_dir = "./data/train" self.test_dir = "./data/test" # 定义图片训练相关网络参数 self.image_size = (224, 224) self.batch_size = 32 # 定义迁移学习的基类模型 # 不包含VGG当中3个全连接层的模型加载并且加载了参数 # vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5 self.base_model = VGG16(weights=‘imagenet‘, include_top=False) self.label_dict = { ‘0‘: ‘汽车‘, ‘1‘: ‘恐龙‘, ‘2‘: ‘大象‘, ‘3‘: ‘花‘, ‘4‘: ‘马‘ } def get_local_data(self): """ 读取本地的图片数据以及类别 :return: 训练数据和测试数据迭代器 """ # 使用flow_from_derectory train_gen = self.train_generator.flow_from_directory(self.train_dir, target_size=self.image_size, batch_size=self.batch_size, class_mode=‘binary‘, shuffle=True) test_gen = self.test_generator.flow_from_directory(self.test_dir, target_size=self.image_size, batch_size=self.batch_size, class_mode=‘binary‘, shuffle=True) return train_gen, test_gen def refine_base_model(self): """ 微调VGG结构,5blocks后面+全局平均池化(减少迁移学习的参数数量)+两个全连接层 :return: """ # 1、获取原notop模型得出 # [?, ?, ?, 512] x = self.base_model.outputs[0] # 2、在输出后面增加我们结构 # [?, ?, ?, 512]---->[?, 1 * 1 * 512] x = keras.layers.GlobalAveragePooling2D()(x) # 3、定义新的迁移模型 x = keras.layers.Dense(1024, activation=tf.nn.relu)(x) y_predict = keras.layers.Dense(5, activation=tf.nn.softmax)(x) # model定义新模型 # VGG 模型的输入, 输出:y_predict transfer_model = keras.models.Model(inputs=self.base_model.inputs, outputs=y_predict) return transfer_model def freeze_model(self): """ 冻结VGG模型(5blocks) 冻结VGG的多少,根据你的数据量 :return: """ # self.base_model.layers 获取所有层,返回层的列表 for layer in self.base_model.layers: layer.trainable = False def compile(self, model): """ 编译模型 :return: """ model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.sparse_categorical_crossentropy, metrics=[‘accuracy‘]) return None def fit_generator(self, model, train_gen, test_gen): """ 训练模型,model.fit_generator()不是选择model.fit() :return: """ # 每一次迭代准确率记录的h5文件 modelckpt = keras.callbacks.ModelCheckpoint(‘./ckpt/transfer_{epoch:02d}-{val_acc:.2f}.h5‘, monitor=‘val_acc‘, save_weights_only=True, save_best_only=True, mode=‘auto‘, period=1) model.fit_generator(train_gen, epochs=3, validation_data=test_gen, callbacks=[modelckpt]) return None def predict(self, model): """ 预测类别 :return: """ # 加载模型,transfer_model model.load_weights("./ckpt/transfer_02-0.93.h5") # 读取图片,处理 image = load_img("./1.jpg", target_size=(224, 224)) image.show() image = img_to_array(image) # print(image.shape) # 四维(224, 224, 3)---》(1, 224, 224, 3) img = image.reshape([1, image.shape[0], image.shape[1], image.shape[2]]) # print(img) # model.predict() # 预测结果进行处理 image = preprocess_input(img) predictions = model.predict(image) print(predictions) res = np.argmax(predictions, axis=1) print("所预测的类别是:",self.label_dict[str(res[0])]) if __name__ == ‘__main__‘: tm = TransferModel() # 训练 # train_gen, test_gen = tm.get_local_data() # # print(train_gen) # # for data in train_gen: # # print(data[0].shape, data[1].shape) # # print(tm.base_model.summary()) # model = tm.refine_base_model() # # print(model) # tm.freeze_model() # tm.compile(model) # # tm.fit_generator(model, train_gen, test_gen) # 测试 model = tm.refine_base_model() tm.predict(model)
以上是关于TensorFlow keras 迁移学习的主要内容,如果未能解决你的问题,请参考以下文章
重要更新 | 谷歌发布 TensorFlow 1.4,迁移Keras,支持分布式训练
深度学习keras + tensorflow 实现猫和狗图像分类