布隆过滤器

Posted jwen1994

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了布隆过滤器相关的知识,希望对你有一定的参考价值。

试想一下这样的场景,当黑客故意访问不存在的数据,导致程序不断访问DB数据库的数据,数据库会不会挂掉?答案是会的。所以为了避免这种情况发生,当黑客访问不存在的缓存时能够迅速返回避免缓存及DB挂掉,引出了今天讲的布隆过滤器。

布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

优点:相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数。另外,散列函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势

缺点:布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣

 技术图片

 

技术图片

Spring Boot 实现谷歌布隆过滤器——以会员抽奖为例

技术图片

步骤一:引入依赖

<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>21.0</version>
</dependency>

步骤二:将需要判断数据是否存在的key值

@Service
public class BloomFilterService {

    @Resource
    private SysUserMapper sysUserMapper;

    private BloomFilter<Integer> bf;

    /***
     * PostConstruct 程序启动时候加载此方法
     */
    @PostConstruct
    public void initBloomFilter() {
        SysUserExample sysUserExample = new SysUserExample();
        List<SysUser> sysUserList = sysUserMapper.selectByExample(sysUserExample);
        if(CollectionUtils.isEmpty(sysUserList)){
            return;
        }
        //创建布隆过滤器(默认3%误差)
        bf = BloomFilter.create(Funnels.integerFunnel(),sysUserList.size());
        for (SysUser sysUser:sysUserList) {
            bf.put(sysUser.getId());
        }
    }

    /***
     * 判断id可能存在于布隆过滤器里面
     * @param id
     * @return
     */
    public boolean userIdExists(int id){
        return bf.mightContain(id);
    }

}

步骤三:进行测试

@RestController
public class BloomFilterController {
    @Resource
    private BloomFilterService bloomFilterService;

    @RequestMapping("/bloom/idExists")
    public boolean ifExists(int id){
        return bloomFilterService.userIdExists(id);
    }
}

基于内存的 google 布隆过滤器的缺陷与思考

  • 重启即失效
  • 本地内存无法用在分布式场景
  • 不支持大数据量存储

为了解决这些问题,我们可以使用 Redis 布隆过滤器,它的好处有:

  • 可扩展性Bloom过滤器
  • 一旦Bloom过滤器达到容量,就会在其上创建一个新的过滤器
  • 不存在重启即失效或者定时任务维护的成本
  • 基于goole实现的布隆过滤器需要启动之后初始化布隆过滤器

它的缺点:需要网络 IO,性能比基于内存的过滤器低

优先基于数据量进行考虑选择哪个布隆过滤器

 

基于 Lua 脚本实现 Spring Boot 和布隆过滤器的整合

步骤一:编写两个 Lua 脚本

bloomFilterAdd.lua

local bloomName = KEYS[1]
local value = KEYS[2]

-- bloomFilter
local result_1 = redis.call(BF.ADD, bloomName, value)
return result_1

bloomFilterExist.lua

local bloomName = KEYS[1]
local value = KEYS[2]

-- bloomFilter
local result_1 = redis.call(BF.EXISTS, bloomName, value)
return result_1

步骤二:新建两个方法

1)添加数据到指定名称的布隆过滤器(bloomFilterAdd)

2)从指定名称的布隆过滤器获取 key 是否存在的脚本(bloomFilterExists)

@Service
public class RedisService {
    @Autowired
    private RedisTemplate redisTemplate;

    private static final String bloomFilterName = "isVipBloom";

    public Boolean bloomFilterAdd(int value){
        DefaultRedisScript<Boolean> bloomAdd = new DefaultRedisScript<>();
        bloomAdd.setScriptSource(new ResourceScriptSource(new ClassPathResource("bloomFilterAdd.lua")));
        bloomAdd.setResultType(Boolean.class);
        List<Object> keyList= new ArrayList<>();
        keyList.add(bloomFilterName);
        keyList.add(value+"");
        Boolean result = (Boolean) redisTemplate.execute(bloomAdd,keyList);
        return result;
    }

    public Boolean bloomFilterExists(int value){
        DefaultRedisScript<Boolean> bloomExists= new DefaultRedisScript<>();
        bloomExists.setScriptSource(new ResourceScriptSource(new ClassPathResource("bloomFilterExist.lua")));
        bloomExists.setResultType(Boolean.class);
        List<Object> keyList= new ArrayList<>();
        keyList.add(bloomFilterName);
        keyList.add(value+"");
        Boolean result = (Boolean) redisTemplate.execute(bloomExists,keyList);
        return result;
    }
}

步骤三:进行测试

@RestController
public class BloomFilterController {
    @Resource
    private RedisService redisService;

    @RequestMapping("/bloom/redisIdExists")
    public boolean redisidExists(int id){
        return redisService.bloomFilterExists(id);
    }

    @RequestMapping("/bloom/redisIdAdd")
    public boolean redisidAdd(int id){
        return redisService.bloomFilterAdd(id);
    }
}

 

实现一个秒杀业务

技术图片

 

 

技术图片

1)利用 Redis 缓存 incr 拦截流量

首先通过数据控制模块,提前将秒杀商品缓存到读写分离 Redis,并设置秒杀开始标记如下:

  • skuId_start: 0    开始标记,0表示秒杀还没开始
  • skuId_count: 10000   表示总数
  • skuId_access: 12000  表示接受抢购数

秒杀开始前,服务集群读取 skuId_start 为 0,直接返回未开始。之所以设置这个值而不是根据时间判断是否开始,是因为服务时间可能不一致(相差几百毫秒)这样可能导致流量倾斜(其他服务没开始,会将大量的流量堆积到开始的服务上)

数据控制模块将 skuId_start 改为1,标志秒杀开始。

当接受下单数达到 skuId_count*1.2 后,继续拦截所有请求。

2)利用 Redis 缓存加速库存扣量

  • skuId_booked: 0 表示没有抢购

3)将用户订单数据写入mq

4)监听mq入库

代码实现

@Service
public class SeckillService {

    private static final String secStartPrefix = "skuId_start_";
    private static final String secAccess = "skuId_access_";
    private static final String secCount = "skuId_count_";
    private static final String filterName = "skuId_bloomfilter_";
    private static final String bookedName = "skuId_booked_";


    @Resource
    private RedisService redisService;

    public String seckill(int uid, int skuId) {
        //流量拦截层
        //1、判断秒杀是否开始   0_1554045087    开始标识_开始时间
        String isStart = (String) redisService.get(secStartPrefix + skuId);
        if (StringUtils.isBlank(isStart)) {
            return "还未开始";
        }
        if (isStart.contains("_")) {
            Integer isStartInt = Integer.parseInt(isStart.split("_")[0]);
            Integer startTime = Integer.parseInt(isStart.split("_")[1]);
            if (isStartInt == 0) {
                if (startTime > getNow()) {
                    return "还未开始";
                } else {
                    //代表秒杀已经开始
                    redisService.set(secStartPrefix + skuId, 1 + "");
                }
            } else {
                return "系统异常";
            }
        } else {
            if (Integer.parseInt(isStart) != 1) {
                return "系统异常";
            }
        }
        //2、流量拦截
        String skuIdAccessName = secAccess + skuId;
        Integer accessNumInt = 0;
        String accessNum = (String) redisService.get(skuIdAccessName);
        if (StringUtils.isNotBlank(accessNum)) {
            accessNumInt = Integer.parseInt(accessNum);
        }
        String skuIdCountName = secCount + skuId;
        Integer countNumInt = Integer.parseInt((String) redisService.get(skuIdCountName));
        if (countNumInt * 1.2 < accessNumInt) {
            return "抢购已经完成,欢迎下次参与";
        } else {
            redisService.incr(skuIdAccessName);
        }
        //信息校验层
        if (redisService.bloomFilterExists(filterName, uid)) {
            return "您已经抢购过该商品,请勿重复下发!";
        } else {
            redisService.bloomFilterAdd(filterName, uid);
        }
        Boolean isSuccess = redisService.getAndIncrLua(bookedName + skuId);
        if (isSuccess) {
            return "恭喜您抢购成功!!!";
        } else {
            return "抢购结束,欢迎下次参与";
        }
    }

    private long getNow() {
        return System.currentTimeMillis() / 1000;
    }
}

RedisService

技术图片
@Service
public class RedisService {

    @Autowired
    private RedisTemplate redisTemplate;

    private static double size = Math.pow(2, 32);


    /**
     * 写入缓存
     *
     * @param key
     * @param offset 位 8Bit=1Byte
     * @return
     */
    public boolean setBit(String key, long offset, boolean isShow) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            operations.setBit(key, offset, isShow);
            result = true;
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    /**
     * 写入缓存
     *
     * @param key
     * @param offset
     * @return
     */
    public boolean getBit(String key, long offset) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            result = operations.getBit(key, offset);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }


    /**
     * 写入缓存
     *
     * @param key
     * @param value
     * @return
     */
    public boolean set(final String key, Object value) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            redisTemplate.opsForList();
            operations.set(key, value);
            result = true;
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }


    /**
     * 写入缓存
     *
     * @param key
     * @return
     */
    public Object get(final String key) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            return operations.get(key);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }


    /**
     * 写入缓存
     *
     * @param key
     * @param value
     * @return
     */
    public boolean decr(final String key, int value) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            operations.increment(key, -value);
            result = true;
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }


    /**
     * 写入缓存
     *
     * @param key
     * @return
     */
    public boolean incr(final String key) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            operations.increment(key, 1);
            result = true;
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    /**
     * 写入缓存设置时效时间
     *
     * @param key
     * @param value
     * @return
     */
    public boolean set(final String key, Object value, Long expireTime) {
        boolean result = false;
        try {
            ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
            operations.set(key, value);
            redisTemplate.expire(key, expireTime, TimeUnit.SECONDS);
            result = true;
        } catch (Exception e) {
            e.printStackTrace();
        }
        return result;
    }

    /**
     * 批量删除对应的value
     *
     * @param keys
     */
    public void remove(final String... keys) {
        for (String key : keys) {
            remove(key);
        }
    }


    /**
     * 删除对应的value
     *
     * @param key
     */
    public void remove(final String key) {
        if (exists(key)) {
            redisTemplate.delete(key);
        }
    }

    /**
     * 判断缓存中是否有对应的value
     *
     * @param key
     * @return
     */
    public boolean exists(final String key) {
        return redisTemplate.hasKey(key);
    }

    /**
     * 读取缓存
     *
     * @param key
     * @return
     */
    public Object genValue(final String key) {
        Object result = null;
        ValueOperations<String, String> operations = redisTemplate.opsForValue();
        result = operations.get(key);
        return result;
    }

    /**
     * 哈希 添加
     *
     * @param key
     * @param hashKey
     * @param value
     */
    public void hmSet(String key, Object hashKey, Object value) {
        HashOperations<String, Object, Object> hash = redisTemplate.opsForHash();
        hash.put(key, hashKey, value);
    }

    /**
     * 哈希获取数据
     *
     * @param key
     * @param hashKey
     * @return
     */
    public Object hmGet(String key, Object hashKey) {
        HashOperations<String, Object, Object> hash = redisTemplate.opsForHash();
        return hash.get(key, hashKey);
    }

    /**
     * 列表添加
     *
     * @param k
     * @param v
     */
    public void lPush(String k, Object v) {
        ListOperations<String, Object> list = redisTemplate.opsForList();
        list.rightPush(k, v);
    }

    /**
     * 列表获取
     *
     * @param k
     * @param l
     * @param l1
     * @return
     */
    public List<Object> lRange(String k, long l, long l1) {
        ListOperations<String, Object> list = redisTemplate.opsForList();
        return list.range(k, l, l1);
    }

    /**
     * 集合添加
     *
     * @param key
     * @param value
     */
    public void add(String key, Object value) {
        SetOperations<String, Object> set = redisTemplate.opsForSet();
        set.add(key, value);
    }

    /**
     * 集合获取
     *
     * @param key
     * @return
     */
    public Set<Object> setMembers(String key) {
        SetOperations<String, Object> set = redisTemplate.opsForSet();
        return set.members(key);
    }

    /**
     * 有序集合添加
     *
     * @param key
     * @param value
     * @param scoure
     */
    public void zAdd(String key, Object value, double scoure) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        zset.add(key, value, scoure);
    }

    /**
     * 有序集合获取
     *
     * @param key
     * @param scoure
     * @param scoure1
     * @return
     */
    public Set<Object> rangeByScore(String key, double scoure, double scoure1) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        redisTemplate.opsForValue();
        return zset.rangeByScore(key, scoure, scoure1);
    }


    //第一次加载的时候将数据加载到redis中
    public void saveDataToRedis(String name) {
        double index = Math.abs(name.hashCode() % size);
        long indexLong = new Double(index).longValue();
        boolean availableUsers = setBit("availableUsers", indexLong, true);
    }

    //第一次加载的时候将数据加载到redis中
    public boolean getDataToRedis(String name) {

        double index = Math.abs(name.hashCode() % size);
        long indexLong = new Double(index).longValue();
        return getBit("availableUsers", indexLong);
    }

    /**
     * 有序集合获取排名
     *
     * @param key   集合名称
     * @param value 值
     */
    public Long zRank(String key, Object value) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        return zset.rank(key, value);
    }


    /**
     * 有序集合获取排名
     *
     * @param key
     */
    public Set<ZSetOperations.TypedTuple<Object>> zRankWithScore(String key, long start, long end) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        Set<ZSetOperations.TypedTuple<Object>> ret = zset.rangeWithScores(key, start, end);
        return ret;
    }

    /**
     * 有序集合添加
     *
     * @param key
     * @param value
     */
    public Double zSetScore(String key, Object value) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        return zset.score(key, value);
    }


    /**
     * 有序集合添加分数
     *
     * @param key
     * @param value
     * @param scoure
     */
    public void incrementScore(String key, Object value, double scoure) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        zset.incrementScore(key, value, scoure);
    }


    /**
     * 有序集合获取排名
     *
     * @param key
     */
    public Set<ZSetOperations.TypedTuple<Object>> reverseZRankWithScore(String key, long start, long end) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        Set<ZSetOperations.TypedTuple<Object>> ret = zset.reverseRangeByScoreWithScores(key, start, end);
        return ret;
    }

    /**
     * 有序集合获取排名
     *
     * @param key
     */
    public Set<ZSetOperations.TypedTuple<Object>> reverseZRankWithRank(String key, long start, long end) {
        ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
        Set<ZSetOperations.TypedTuple<Object>> ret = zset.reverseRangeWithScores(key, start, end);
        return ret;
    }


    public Boolean bloomFilterAdd(String filterName, int value) {
        DefaultRedisScript<Boolean> bloomAdd = new DefaultRedisScript<>();
        bloomAdd.setScriptSource(new ResourceScriptSource(new ClassPathResource("bloomFilterAdd.lua")));
        bloomAdd.setResultType(Boolean.class);
        List<Object> keyList = new ArrayList<>();
        keyList.add(filterName);
        keyList.add(value + "");
        Boolean result = (Boolean) redisTemplate.execute(bloomAdd, keyList);
        return result;
    }


    public Boolean bloomFilterExists(String filterName, int value) {
        DefaultRedisScript<Boolean> bloomExists = new DefaultRedisScript<>();
        bloomExists.setScriptSource(new ResourceScriptSource(new ClassPathResource("bloomFilterExist.lua")));
        bloomExists.setResultType(Boolean.class);
        List<Object> keyList = new ArrayList<>();
        keyList.add(filterName);
        keyList.add(value + "");
        Boolean result = (Boolean) redisTemplate.execute(bloomExists, keyList);
        return result;
    }

    public Boolean getAndIncrLua(String key) {
        DefaultRedisScript<Boolean> bloomExists = new DefaultRedisScript<>();
        bloomExists.setScriptSource(new ResourceScriptSource(new ClassPathResource("secKillIncr.lua")));
        bloomExists.setResultType(Boolean.class);
        List<Object> keyList = new ArrayList<>();
        keyList.add(key);
        Boolean result = (Boolean) redisTemplate.execute(bloomExists, keyList);
        return result;
    }
}
RedisService 类似工具类

secKillIncr.lua

local lockKey = KEYS[1]

-- get info
local result_1 = redis.call(GET, lockKey)
if tonumber(result_1) <10000
then
local result_2= redis.call(INCR, lockKey)
return result_1
else
return result_1
end

测试:

@RestController
public class SeckillController {

    @Resource
    private SeckillService seckillService;

    @RequestMapping("/redis/seckill")
    public String secKill(int uid,int skuId){
         return seckillService.seckill(uid,skuId);
    }
}

 

以上是关于布隆过滤器的主要内容,如果未能解决你的问题,请参考以下文章

BloomFilter 布隆过滤器思想原理和代码实现

布隆过滤器:实现代码

手撕STLbitset(位图)布隆过滤器

手撕STLbitset(位图)布隆过滤器

手撕STLbitset(位图)布隆过滤器

布隆过滤器实现代码php+redis