机器学习算法原理详细推导与实现:支持向量机(下)
Posted ttyb
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习算法原理详细推导与实现:支持向量机(下)相关的知识,希望对你有一定的参考价值。
【机器学习】算法原理详细推导与实现(五):支持向量机(下)
上一章节介绍了支持向量机的生成和求解方式,能够根据训练集依次得出(omega)、(b)的计算方式,但是如何求解需要用到核函数,将在这一章详细推导实现。
核函数
在讲核函数之前,要对上一章节得到的结果列举出来。之前需要优化的凸函数为:
[ min_{gamma,omega,b}->frac{1}{2}||omega||^2 ]
[ y^{(i)}(omega^Tx^{(i)}+b) geq 1 ,i=1,2,...,m ]
这里假设数据是线性可分隔的,对于这个优化项目,给定一个训练集合,这个问题的算法会找到一个数据集合的最优间隔分类器,可以使训练样本的几何间隔最大化。
在上一章节【机器学习】算法原理详细推导与实现(四):支持向量机(上)中,我们推出了这个问题的对偶问题,也就是要使这个式子最大化:
[ max_{alpha}Gamma(omega,b,alpha)=sum_{i=1}^malpha_i-frac{1}{2}sum^m_{i=1,j=1}alpha_ialpha_jy^{(i)}y^{(j)}<x^{(i)},x^{(j)}> ]
[ alpha_i geq 0,i=1,2,...,m ]
[ sum_{i=1}^malpha_iy^{(i)}=0 ]
上面是我们的原始问题,且根据拉格朗日对偶步骤计算得到参数(omega):
[ omega=sum^m_{i=1}alpha_iy^{(i)}x^{(i)} ]
[ b=frac{max_{i:y^{(i)}=-1}omega^Tx^{(i)}+min_{i:y^{(i)}=1}omega^Tx^{(i)}}{2} ]
当需要做分类预测时,需要对新来的输入值(x)进行计算,计算其假设的值是否大于零,也就是做一次线性运算来判断是正样本还是负样本,有如下计算函数:
[ egin{split} h_{omega,b}(x)&=g(omega^Tx+b) &=g(sum^m_{i=1}alpha_iy^{(i)}<x^{(i)},x>+b) end{split} ]
核函数概念
接下来要介绍“核”的概念,这个概念具有这样的性质:
算法对于x的依赖仅仅局限于这些内积的计算,甚至在整个算法中,都不会直接使用到向量x的值,而是只需要用到训练样本与输入特征向量的内积
而“核”的概念是这样的,考虑到最初在【机器学习】算法原理详细推导与实现(一):线性回归中提出的问题,比如有一个输入(xin R)是房屋的面积,(y)是房子的价格。假设我们从样本点的分布中看到(x)和(y)符合3次曲线,那么我们会希望使用(x)的三次多项式来逼近这些样本点。首先将特征(x)扩展到三维((x,x^2,x^3)),这里将这种特征变换称作特征映射,映射函数为(varphi(x)):
[ varphi(x)=egin{bmatrix} x x^2 x^3 end{bmatrix} ]
用(varphi(x))代表原来的特征(x)映射成的,这里希望得到映射后的特征应用于svm
分类,而不是最初的一维特征,只需要将前面(omega^Tx+b)公式中的内积从(<x^{(i)},x^{(j)}>)映射到(<varphi(x)^{(i)},varphi(x)^{(j)}>)。至于为什么需要映射后的特征而不是最初的特征来参与计算,上面提到的一个原因:为了更好的拟合,另外一个原因是样本可能存在线性不可分的情况,而特征映射到高维过后往往就可分了。
如果原始特征的内积为(<x,z>),映射后为(<varphi(x),varphi(z)>),那么一般核函数定义为:
[ K(x,z)=varphi(x)^Tvarphi(z) ]
为什么会那么定义核函数?有些时候(varphi(x))的维度将会非常的高,可能会包含非常高维的多项式特征,甚至会到无限维。当(varphi(x))的维度非常高时,可能无法高效的计算内积,甚至无法计算。如果要求解前面所提到的凸函数,只需要先计算(varphi(x)),然后再计算(varphi(x)^Tvarphi(z))即可,但是这种常规方法是很低效的,比如最开始的特征是(n)维,并将其映射到(n^2)维度,这时候计算需要(O(n^2))的时间复杂度。这里假设(x)和(z)都是(n)维的:
[ K(x,z)=(x^Tz)^2 ]
展开后得到:
[ egin{split} K(x,z)&=(x^Tz)^2 &=(sum^n_{i=1}x_iz_i)(sum^n_{j=1}x_jz_j) &=sum^n_{i=1}sum^n_{j=1}x_ix_jz_iz_j &=sum^n_{i=1}sum^n_{j=1}(x_ix_j)(z_iz_j) &=varphi(x)^Tvarphi(z) end{split} ]
也就是说,如果开始的特征是(n)维,并将其映射到(n^2)维度后,其映射后的计算量为(O(n^2))。而如果只是计算原始特征(x)和(z)的内积平方,时间复杂度还是(O(n)),其结果等价于映射后的特征内积。
回到之前的假设,当(n=3)时,这个核(K(x,z))对应的特征映射(varphi(x))为:
[ varphi(x)=egin{bmatrix} x_1x_1 x_1x_2 x_1x_3 x_2x_1 x_2x_2 x_2x_3 x_3x_1 x_3x_2 x_3x_3 end{bmatrix} ]
这是时间复杂度为(O(n^2))计算方式,而如果不计算(varphi(x)),直接计算(<x,z>)从而得到<(varphi(x)),(varphi(z))>的内积,时间复杂度将缩小(O(n))。
同理将核函数定义为:
[ egin{split} K(x,z)&=(x^Tz+c) &=sum^n_{i,j=1}(x_ix_j)(z_iz_j)+sum^n_{i=1}(sqrt{2cx_i})(sqrt{2cx_j})+c^2 end{split} ]
当(n=3)时,这个核(K(x,z))对应的特征映射(varphi(x))为:
[ varphi(x)=egin{bmatrix} x_1x_1 x_1x_2 x_1x_3 x_2x_1 x_2x_2 x_2x_3 x_3x_1 x_3x_2 x_3x_3 sqrt{2c}x_1 sqrt{2c}x_2 sqrt{2c}x_3 c end{bmatrix} ]
总结来说,核的一种一般化形式可以表示为:
[ K(x,z)=(x^Tz+c)^d ]
对应着(egin{bmatrix} n+d d end{bmatrix}) 个特征单项式,即特征维度。
假如给定一组特征(x),将其转化为一个特征向量(varphi(x));给定一组特征(z),将其转化为一个特征向量(varphi(z)),所以核计算就是两个向量的内积(<varphi(x),varphi(z)>)。如果(varphi(x))和(varphi(z))向量夹角越小,即两个向量越相似(余弦定理),那么(varphi(x))和(varphi(z))将指向相同的方向,因此内积会比较大;相反的如果(varphi(x))和(varphi(z))向量夹角越大,即两个向量相似度很低,那么(varphi(x))和(varphi(z))将指向不同的方向,因此内即将会比较小。
如果有一个核函数如下:
[ K(x,z)=exp^{(-frac{||x-z||^2}{2sigma^2})} ]
如果(x)和(z)很相近((||x-z||approx0)),那么核函数的值为1;如果(x)和(z)相差很大((||x-z||>>0)),那么核函数的值约等于0。这个核函数类似于高斯分布,所以称为高斯核函数,能够把原始特征映射到无穷维。
在前面说了:为什么需要映射后的特征而不是最初的特征来参与计算?
上面提到了两个原因:
- 为了更好的拟合
- 样本可能存在线性不可分的情况,而特征映射到高维过后往往就可分了
第二种情况如下所示:
左边使用线性的时候,使用svm
学习出(omega)和(b)后,新来样本(x)就可以代入到(omega^Tx+b)中进行判断,但是像图中所示是无法判断的;如果使用了核函数过后,(omega^Tx+b)变成了(omega^Tvarphi(x)+b),直接可以用下面的方式计算:
[ egin{split} omega^Tx+b&=(sum^m_{i=1}alpha_iy^{(i)}x^{(i)})^Tx+b &=sum^m_{i=1}alpha_iy^{(i)}<x^{(i)},x>+b &=sum^m_{i=1}alpha_iy^{(i)}K(x^{(i)})+b end{split} ]
只需要将(<x^{(i)},x>)替换成(K(x^{(i)}))就能将低维特征转化为高维特征,将线性不可分转化成高维可分。
规则化和不可分情况处理
我们之前讨论的情况都是建立在样例线性可分的假设上,当样例线性不可分时,我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了。然而,映射后我们也不能100%保证可分。那怎么办呢,我们需要将模型进行调整,以保证在不可分的情况下,也能够尽可能地找出分隔超平面。
看下面的图可以解释:
在右边的图可以可以看到上面一个离群点(可能是噪声),会造成超平面的移动改变,使集合间隔的间隔距离缩小,可见以前的模型对噪声非常敏感。再有甚者,如果离群点在另外一个类中,那么这时候就是线性不可分了。 这时候我们应该允许一些点游离在模型中违背限制条件(函数间隔大于 1)。我们设计得到新的模型如下(也称软间隔):
[ min_{gamma,omega,b}->frac{1}{2}||omega||^2+Csum^m_{i=1}xi_i ]
[ y^{(i)}(omega^Tx^{(i)}+b) geq 1-xi_i ,i=1,2,...,m ]
[ xi_i geq 0,i=1,...,m ]
引入非负参数(xi_i)(松弛变量)过后,也就意味着允许某些样本的函数间隔小于1,甚至是负数,负数就代表样本点在对方区域中,如上方右边图的虚线作为超平面,一个空心圆点的函数间隔为负数。
增加新的条件后,需要重新调整目标函数,增加对离群点进行处罚,也就是在求最小值的目标函数后面加上(Csum^m_{i=1}xi_i),因为定义(xi_i geq 0),所以离群点越多,那么目标函数的值越大,就等于违背求最小值的初衷。而(C)是离群点的权重,(C)越大表明离群点对于目标函数的影响越大,也就是越不希望看到离群点。
修改目标函数后,原式子变成:
[ Gamma(omega,b,xi,alpha,r)=frac{1}{2}omega^Tomega+Csum^m_{i=1}xi_i-sum^m_{i=1}alpha_i[y^{(i)}(x^Tomega+b)-1+xi_i]-sum^m_{i=1}r_ixi_i ]
这里的(alpha)和(r)都是拉格朗日算子,根据上一章节拉格朗日的求解步骤:
- 构造出拉格朗日函数后,将其看作是变量(omega)和(b)的函数
- 分别对其求偏导,得到(omega)和(b)的表达式
- 然后带入上述拉格朗日式子中,求带入后式子的极大值
最后化简得到的结果是:
[ max_{alpha}W(alpha)=sum_{i=1}^malpha_i-frac{1}{2}sum^m_{i=1,j=1}alpha_ialpha_jy^{(i)}y^{(j)}<x^{(i)},x^{(j)}> ]
[ C geq alpha_i geq 0,i=1,2,...,m ]
[ sum_{i=1}^malpha_iy^{(i)}=0 ]
这里唯一不同的地方是限制条件多了一个离群点的权重(C)。
SMO优化算法
SMO
是一个求解对偶问题的优化算法,目前还剩下最后的对偶问题还未解决:
[ max_{alpha}W(alpha)=sum_{i=1}^malpha_i-frac{1}{2}sum^m_{i=1,j=1}alpha_ialpha_jy^{(i)}y^{(j)}<x^{(i)},x^{(j)}> ]
[ C geq alpha_i geq 0,i=1,2,...,m ]
[ sum_{i=1}^malpha_iy^{(i)}=0 ]
我们需要根据上述问题设计出一个能够高效解决的算法,步骤如下:
- 首先选择两个要改变的(alpha)值(alpha_i)、(alpha_j)
- 其次保持除了(alpha_i)、(alpha_j)之外的所有参数固定
- 最后同时相对于这两个参数使(omega)取最优,且同时满足所有约束条件
怎样在满足所有约束条件的情况下,相对于选出来的两个参数(alpha_i)、(alpha_j)使(omega)取最优值?SMO
优化算法能够高效完成这个工作。SMO
算法非常的高效,只需要更多次数的迭代以达到收敛,而且每次迭代所需要的代价都非常小。
为了推出这个步骤,我们需要相对于(alpha_i)、(alpha_j)进行更新,假设取值是(alpha_1)、(alpha_2),即假设(alpha_1)、(alpha_2)不再是变量(可以由其他值推出),可以根据约束条件推导得到:
[ egin{split} sum_{i=1}^malpha_iy^{(i)}&=0 alpha_1y_1+alpha_2y_2&=-sum_{i=3}^malpha_iy^{(i)} end{split} ]
由于(alpha_3)、(alpha_4)、...、(alpha_m)都是已知固定值,因此为了方便将等式右边,可将等式右边标记成(zeta):
[ alpha_1y^{(1)}+alpha_2^{(2)}=zeta ]
还有一个约束条件:
[ C geq alpha_i geq 0,i=1,2,...,m ]
这个约束条件被称作为“方形约束”,如果将(alpha_1)、(alpha_2)画出来:
那么(alpha_1)、(alpha_2)表示的值应该都在([0,C])之间,也就是在方框里面,这意味着:
[ alpha=frac{zeta-alpha_2y^{(2)}}{y^{(1)}} ]
然后带入到需要求解的式子中:
[ W(alpha_1,alpha_2,...,alpha_m)=W(frac{zeta-alpha_2y^{(2)}}{y^{(1)}},alpha_2,...,alpha_m) ]
在前面我们认为(alpha_3)、(alpha_4)、...、(alpha_m)都是已知固定值,只有(alpha_1)、(alpha_2)是未知需要求解的。那么把(W(frac{zeta-alpha_2y^{(2)}}{y^{(1)}},alpha_2,...,alpha_m))展开后可以表示成(aalpha_2^2+balpha_2+c)的形式,其中(a)、(b)、(c)是由(alpha_3)、(alpha_4)、...、(alpha_m)表示出来,即(W)是一个二次函数。而其实对于所有的(alpha),如果保持其他参数都固定的话,都可以表示成(W)关于某个(alpha)的一元二次函数:
[ egin{split} W(alpha_1,alpha_2,...,alpha_m)&=W(frac{zeta-alpha_2y^{(2)}}{y^{(1)}},alpha_2,...,alpha_m) &=aalpha_2^2+balpha_2+c end{split} ]
由于上面式子是一个标准的一元二次函数,所以很容易求解出最优值,从而可以得到(alpha_2)的最优值,而这个最优值一定会在上图中(alpha_1-alpha_2=zeta)这条线上,且在“方形约束”中。按照这种方式解除(alpha_2)后,之后根据(alpha_1)和(alpha_2)的关系求解出(alpha_1),这样子就求解出了相对于(alpha_1)和(alpha_2)关于(W),且满足所有约束条件的最优值,该算法的关键是对一个一元二次函数求最优解,这个求解非常简单,这就使得SMO
算法的内嵌计算非常高效。
如何求解(alpha_2)的值呢?只需要对式子进行求导(aalpha_2^2+balpha_2+c),即对(W)进行求导,然而要保证(alpha_2)即在方形约束内,也在(alpha_1-alpha_2=zeta)这条线上,那么就要保证(H geq alpha_2 geq L),这里使用(alpha_2^{new,unclipped})来表示求导出来的(alpha_2),然后最后(alpha_2^new)的迭代更新方式如下所示:
[ alpha_2^new=egin{cases} H, & ext {if $alpha_2^{new,unclipped}>H$} alpha_2^{new,unclipped}, & ext{if $H geq alpha_2^{new,unclipped} geq L$} L, & ext{if $alpha_2^{new,unclipped} < L$} end{cases} ]
得到(alpha_2)后,由此可以返回求解(alpha_1)得到新值(alpha_1),这里就是SMO
优化算法的核心思想。根据SMO
优化算法的核心思想:
- 首先选择两个要改变的(alpha)值(alpha_i)、(alpha_j)
- 其次保持除了(alpha_i)、(alpha_j)之外的所有参数固定
- 最后同时相对于这两个参数使(omega)取最优,且同时满足所有约束条件
可以求解出所有的(alpha),使得(W)取得最大值,即原问题将得到解决:
[ max_{alpha}W(alpha)=sum_{i=1}^malpha_i-frac{1}{2}sum^m_{i=1,j=1}alpha_ialpha_jy^{(i)}y^{(j)}<x^{(i)},x^{(j)}> ]
[ C geq alpha_i geq 0,i=1,2,...,m ]
[ sum_{i=1}^malpha_iy^{(i)}=0 ]
总结
svm
的步骤总结如下:
- 先确定间隔器,这里svm一般默认是几何间隔
- 由间隔器确定间隔函数
- 从间隔函数查看是否包含不等式约束形式
- 根据拉格朗日对偶步骤计算得到参数w、b
- 规则化不可分的参数,即在原对偶式子中加入离群点权重(C),问题转换为(max_{alpha}W(alpha))
- 利用
SMO
优化算法求解(W(alpha))最优值,首先选择两个要改变的(alpha)值(alpha_i)、(alpha_j)- 其次保持除了(alpha_i)、(alpha_j)之外的所有参数固定
- 最后同时相对于这两个参数使(omega)取最优,且同时满足所有约束条件,最后确定选取的这两个(alpha_i)、(alpha_j)的值
- 重复步骤6-9直到所有参数(alpha)求解完成
svm
在神经网络出来之前一直是最优的算法。相比于之前的算法推导复杂一些,但是逻辑并不难,它不想逻辑回归那样去拟合样本点,而是根据几何空间去寻找最优的分割超平面,为了判断哪个超平面最好,引入几个平面间隔最大化目标,从而求解出结果。
实例
有一份数据svm_data1
,加载读取:
import pandas as pd
import matplotlib.pyplot as plt
from scipy.io import loadmat
from sklearn import svm
# 加载data1
raw_data = loadmat('./svm_data1.mat')
# print(raw_data)
# 读取data1的数据
data = pd.DataFrame(raw_data['X'], columns=['X1', 'X2'])
data['y'] = raw_data['y']
positive = data[data['y'].isin([1])]
negative = data[data['y'].isin([0])]
print(positive.shape)
print(negative.shape)
# 查看data1的数据分布
fig, ax = plt.subplots(figsize=(12, 8))
ax.scatter(positive['X1'], positive['X2'], s=50, marker='x', label='Positive')
ax.scatter(negative['X1'], negative['X2'], s=50, marker='o', label='Negative')
ax.legend()
plt.show()
数据分布如下所示:
可以看到数据分在两边很好区分,用一般的分类器例如逻辑回归、朴素贝叶斯即可区分,这里就用svm
的线性核进行分类,设置离群点的权重(C=1),即不区分离群点:
svc = svm.LinearSVC(C=1, loss='hinge', max_iter=1000)
svc.fit(data[['X1', 'X2']], data['y'])
data1_score_1 = svc.score(data[['X1', 'X2']], data['y'])
print(data1_score_1)
得到的准确率为0.980392156863
,分类的图如下:
可以看到左上角有一个点原来是正样本,但是被分类为蓝色(负样本),所以正样本21个,负样本30个,被误分的概率刚好是(frac{1}{51}=?0.01960784313?),所以准确率是(1-?0.01960784313?=0.980392156863),刚好对的上。现在这里设置离群点的权重(C=100)用以区分离群点,得到的准确率为1.0
,分类图像为:
再看第二份数据分布图如下:
这次就不能用线性核分类,需要用到RBF
核分类:
# 做svm分类,使用RBF核
svc = svm.SVC(C=100, gamma=10, probability=True)
svc.fit(data[['X1', 'X2']], data['y'])
data['Probability'] = svc.predict_proba(data[['X1', 'X2']])[:, 0]
分类的结果图如下所示:
结果得到的准确率只有0.769228287521
,因此设置了网格调参:
# 简单的网格调参
C_values = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]
gamma_values = [0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100]
best_score = 0
best_params = {'C': None, 'gamma': None}
# 网格调参开始
for C in C_values:
for gamma in gamma_values:
# 做svm分类,使用RBF核
svc = svm.SVC(C=C, gamma=gamma, probability=True)
svc.fit(data[['X1', 'X2']], data['y'])
# 交叉验证
data2_score = cross_validation.cross_val_score(svc, data[['X1', 'X2']], data['y'], scoring='accuracy', cv=3)
print(data2_score.mean())
最后准确率提高到0.858437379017
,调整到的最优参数为{‘C‘: 10, ‘gamma‘: 100}
数据和代码下载请关注公众号【 机器学习和大数据挖掘 】,后台回复【 机器学习 】即可获取
以上是关于机器学习算法原理详细推导与实现:支持向量机(下)的主要内容,如果未能解决你的问题,请参考以下文章