CF797F Mice and Holes

Posted cjoiershiina-mashiro

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CF797F Mice and Holes相关的知识,希望对你有一定的参考价值。

Link
考虑用非模拟费用流做法解决laofu进队问题。
显然匹配不会交叉,因此每个队匹配的laofu都是一段区间。
(f_{i,j})为前(j)个laofu进前(j)个队的最小距离和,对于第(i)个队,记(sum_j=sumlimits_{k=1}^j|a_k-p_j|)
那么转移就是(f_{i,j}=minlimits_{k=j-c_i}^j(f_{i-1,k}+sum_j-sum_k))
显然最优决策点是单调的,单调队列维护即可。

#include<cmath>
#include<cstdio>
#include<cstring>
#include<utility>
#include<algorithm>
#define fi first
#define se second
using i64=long long;
using pi=std::pair<int,int>;
const int N=5007;
int read(){int x;scanf("%d",&x);return x;}
int n,m,a[N],q[N];pi b[N];
i64 f[N][N],s[N],sum[N];
int main()
{
    n=read(),m=read(),memset(f,0x7f,sizeof f),f[0][0]=0;
    for(int i=1;i<=n;++i) a[i]=read();
    for(int i=1;i<=m;++i) b[i]={read(),read()};
    std::sort(a+1,a+n+1),std::sort(b+1,b+m+1);
    for(int i=1;i<=m;++i) s[i]=s[i-1]+b[i].se;
    if(s[m]<n) return !printf("-1");
    for(int i=1;i<=m;++i)
    {
        int l=0,r=0;
    f[i][0]=q[++r]=0;
        for(int j=1;j<=s[i]&&j<=n;++j)
        {
            f[i][j]=f[i-1][j],sum[j]=sum[j-1]+abs(a[j]-b[i].fi);
            while(j-q[l]>b[i].se||(l<=r&&f[i-1][q[l]]-sum[q[l]]>f[i-1][j]-sum[j])) ++l;
            q[++r]=j,f[i][j]=std::min(f[i][j],sum[j]+f[i-1][q[l]]-sum[q[l]]);
        }
    }
    printf("%lld",f[m][n]);
}

以上是关于CF797F Mice and Holes的主要内容,如果未能解决你的问题,请参考以下文章

Mice and Holes CodeForces - 797F

题解 CF13E Holes

1056 Mice and Rice

CF 148D D. Bag of mice (概率DP||数学期望)

CF13E Holes(分块儿LCT)

UVA 356 - Square Pegs And Round Holes