机器学习”小憩“——总结应用场景
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习”小憩“——总结应用场景相关的知识,希望对你有一定的参考价值。
常见的机器学习模型:感知机,线性回归,逻辑回归,支持向量机,决策树,随机森林,GBDT,XGBoost,贝叶斯,KNN,K-means等;
常见的机器学习理论:过拟合问题,交叉验证问题,模型选择问题,模型融合问题等;
优点:
1.简单好用,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归;
2.可用于数值型数据和离散型数据;
3.训练时间复杂度为O(n);无数据输入假定;
4.对异常值不敏感
缺点:
1.计算复杂性高;空间复杂性高;
2.样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);
3.一般数值很大的时候不用这个,计算量太大。但是单个样本又不能太少 否则容易发生误分。
4.最大的缺点是无法给出数据的内在含义。
朴素贝叶斯
优点:
1.生成式模型,通过计算概率来进行分类,可以用来处理多分类问题,
2.对小规模的数据表现很好,适合多分类任务,适合增量式训练,算法也比较简单。
缺点:
1.对输入数据的表达形式很敏感,
2.由于朴素贝叶斯的“朴素”特点,所以会带来一些准确率上的损失。需要一个比较容易解释,而且不同维度之间相关性较小的模型的时候。
3.需要计算先验概率,分类决策存在错误率。
决策树
优点:
1.概念简单,计算复杂度不高,可解释性强,输出结果易于理解;
2.数据的准备工作简单, 能够同时处理数据型和常规型属性,其他的技术往往要求数据属性的单一。
3.对中间值得确实不敏感,比较适合处理有缺失属性值的样本,能够处理不相关的特征;
4.应用范围广,可以对很多属性的数据集构造决策树,可扩展性强。决策树可以用于不熟悉的数据集合,并从中提取出一些列规则 这一点强于KNN。
缺点:
1.容易出现过拟合;
2.对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。
3. 信息缺失时处理起来比较困难。 忽略数据集中属性之间的相关性。
4.同时它也是相对容易被攻击的分类器。这里的攻击是指人为的改变一些特征,使得分类器判断错误
随机森林
严格来说,随机森林其实算是一种集成算法。它首先随机选取不同的特征(feature)和训练样本(training sample),生成大量的决策树,然后综合这些决策树的结果来进行最终的分类。
随机森林在现实分析中被大量使用,它相对于决策树,在准确性上有了很大的提升,同时一定程度上改善了决策树容易被攻击的特点。
适用情景:
数据维度相对低(几十维),同时对准确性有较高要求时。
因为不需要很多参数调整就可以达到不错的效果,基本上不知道用什么方法的时候都可以先试一下随机森林。
Svm
优点:
1.可用于线性/非线性分类,也可以用于回归,泛化错误率低,计算开销不大,结果容易解释;
2.可以解决小样本情况下的机器学习问题,可以解决高维问题 可以避免神经网络结构选择和局部极小点问题。
3.SVM是最好的现成的分类器,现成是指不加修改可直接使用。并且能够得到较低的错误率,SVM可以对训练集之外的数据点做很好的分类决策。
4.SVM尽量保持与样本间距离的性质导致它抗攻击的能力更强。
缺点:对参数调节和和函数的选择敏感,原始分类器不加修改仅适用于处理二分类问题。
Logistic回归:根据现有数据对分类边界线建立回归公式,依次进行分类。
优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
缺点:容易欠拟合,分类精度可能不高
EM 期望最大化算法-上帝算法
只要有一些训练数据,再定义一个最大化函数,采用EM算法,利用计算机经过若干次迭代,就可以得到所需的模型。EM算法是自收敛的分类算法,既不需要事先设定类别也不需要数据见的两两比较合并等操作。缺点是当所要优化的函数不是凸函数时,EM算法容易给出局部最佳解,而不是最优解。
判别分析 (Discriminant analysis)
使用情景:
判别分析适用于高维数据需要降维的情况,自带降维功能使得我们能方便地观察样本分布。它的正确性有数学公式可以证明,所以同样是很经得住推敲的方式。
但是它的分类准确率往往不是很高,所以不是统计系的人就把它作为降维工具用吧。
同时注意它是假定样本成正态分布的,所以那种同心圆形的数据就不要尝试了。
以上是关于机器学习”小憩“——总结应用场景的主要内容,如果未能解决你的问题,请参考以下文章