VAE代码学习

Posted bluebluesea

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了VAE代码学习相关的知识,希望对你有一定的参考价值。

1.pytorch中给出的例子

https://github.com/pytorch/examples/blob/master/vae/main.py

实现过程非常简单:

class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()

        self.fc1 = nn.Linear(784, 400)#第一层,推断
        self.fc21 = nn.Linear(400, 20)#对应均值
        self.fc22 = nn.Linear(400, 20)#对应方差
        self.fc3 = nn.Linear(20, 400)#生成层1
        self.fc4 = nn.Linear(400, 784)#生成层2

    def encode(self, x):
        h1 = F.relu(self.fc1(x))
        return self.fc21(h1), self.fc22(h1)

    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5*logvar)
        eps = torch.randn_like(std)
        return mu + eps*std

    def decode(self, z):
        h3 = F.relu(self.fc3(z))
        return torch.sigmoid(self.fc4(h3))#这里为什么选sigmoid而不是其他,需要斟酌

    def forward(self, x):
        mu, logvar = self.encode(x.view(-1, 784))
        z = self.reparameterize(mu, logvar)#对均值和方差进行重参数
        return self.decode(z), mu, logvar

那我不明白了,这个https://github.com/wiseodd/generative-models里给的这些VAE实现有什么意义呢?还很难看懂

2.torch中Variable已弃用

 

 

以上是关于VAE代码学习的主要内容,如果未能解决你的问题,请参考以下文章

单指标时间序列异常检测——基于重构概率的变分自编码(VAE)代码实现(详细解释)

单指标时间序列异常检测——基于重构概率的变分自编码(VAE)代码实现(详细解释)

机器学习中的概率模型和概率密度估计方法及VAE生成式模型详解之八(第4章 之 AEVB和VAE)

VAE与CVAE

VAE与CVAE

βVAE学习