2020年寒假学习进度第十天
Posted ljm-zsy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2020年寒假学习进度第十天相关的知识,希望对你有一定的参考价值。
今天主要学习了实验 7 Spark 机器学习库 MLlib 编程实践,
主要代码:
import org.apache.spark.ml.feature.PCA import org.apache.spark.sql.Row import org.apache.spark.ml.linalg.{Vector,Vectors} import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator import org.apache.spark.ml.{Pipeline,PipelineModel} import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer,HashingTF, Tokenizer} import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.classification.LogisticRegressionModel import org.apache.spark.ml.classification.{BinaryLogisticRegressionSummary, LogisticRegression} import org.apache.spark.sql.functions; import spark.implicits._ case class Adult(features: org.apache.spark.ml.linalg.Vector, label: String) val df = sc.textFile("adult.data.txt").map(_.split(",")).map(p =>Adult(Vectors.dense(p(0).toDouble,p(2).toDouble,p(4).toDouble, p(10).toDouble, p(11).toDouble, p(12).toDouble), p(14).toString())).toDF() val test = sc.textFile("adult.test.txt").map(_.split(",")).map(p =>Adult(Vectors.dense(p(0).toDouble,p(2).toDouble,p(4).toDouble, p(10).toDouble, p(11).toDouble, p(12).toDouble), p(14).toString())).toDF() val pca = new PCA().setInputCol("features").setOutputCol("pcaFeatures").setK(3).fit(df) val result = pca.transform(df) val testdata = pca.transform(test) result.show(false) testdata.show(false) val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(result) labelIndexer.labels.foreach(println) val featureIndexer = new VectorIndexer().setInputCol("pcaFeatures").setOutputCol("indexedFeatures").fit(result) println(featureIndexer.numFeatures) val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels) val lr = new LogisticRegression().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setMaxIter(100) val lrPipeline = new Pipeline().setStages(Array(labelIndexer, featureIndexer, lr, labelConverter)) val lrPipelineModel = lrPipeline.fit(result) val lrModel = lrPipelineModel.stages(2).asInstanceOf[LogisticRegressionModel] println("Coefficients: " + lrModel.coefficientMatrix+"Intercept: "+lrModel.interceptVector+"numClasses: "+lrModel.numClasses+"numFeatures: "+lrModel.numFeatures) val lrPredictions = lrPipelineModel.transform(testdata) val evaluator = new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction") val lrAccuracy = evaluator.evaluate(lrPredictions) println("Test Error = " + (1.0 - lrAccuracy)) val pca = new PCA().setInputCol("features").setOutputCol("pcaFeatures") val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(df) val featureIndexer = new VectorIndexer().setInputCol("pcaFeatures").setOutputCol("indexedFeatures") val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels) val lr = new LogisticRegression().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setMaxIter(100) val lrPipeline = new Pipeline().setStages(Array(pca, labelIndexer, featureIndexer, lr, labelConverter)) val paramGrid = new ParamGridBuilder().addGrid(pca.k, Array(1,2,3,4,5,6)).addGrid(lr.elasticNetParam, Array(0.2,0.8)).addGrid(lr.regParam, Array(0.01, 0.1, 0.5)).build() val cv = new CrossValidator().setEstimator(lrPipeline).setEvaluator(new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction")).setEstimatorParamMaps(paramGrid).setNumFolds(3) val cvModel = cv.fit(df) val lrPredictions=cvModel.transform(test) val evaluator = new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction") val lrAccuracy = evaluator.evaluate(lrPredictions) println("准确率为"+lrAccuracy) val bestModel= cvModel.bestModel.asInstanceOf[PipelineModel] val lrModel = bestModel.stages(3).asInstanceOf[LogisticRegressionModel] println("Coefficients: " + lrModel.coefficientMatrix + "Intercept: "+lrModel.interceptVector+ "numClasses: "+lrModel.numClasses+"numFeatures: "+lrModel.numFeatures) val pcaModel = bestModel.stages(0).asInstanceOf[PCAModel] println("Primary Component: " + pcaModel.pc)
在继续这个实验时遇到一个问题,现在还没解决,如图:
org.apache.spark.SparkException: Failed to execute user defined function($anonfun$4: (string) => double)
经过查询这个问题的原因是无法执行定义的函数,但是我完全按照教程中的代码进行就会产生这个问题,网上没有这个问题的解析,所以还未解决。
以上是关于2020年寒假学习进度第十天的主要内容,如果未能解决你的问题,请参考以下文章