智能算法:蚁群算法
Posted kmxojer
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了智能算法:蚁群算法相关的知识,希望对你有一定的参考价值。
作为一种现代智能算法,蚁群算法不需要任何先验知识,最初只是随机地选择搜索路径,随着对解空间的了解,搜索更加具有规律性,并逐渐得到全局最优解。目前,蚁群算法已被成功地应用于求解旅行商问题、车辆调度问题以及指派问题等。。。
求解TSP:
%% 第22章 蚁群算法的优化计算——旅行商问题(TSP)优化 %% 清空环境变量 clear all clc %% 导入数据 load citys_data.mat %% 计算城市间相互距离 n = size(citys,1); D = zeros(n,n); for i = 1:n for j = 1:n if i ~= j D(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2)); else D(i,j) = 1e-4; end end end %% 初始化参数 m = 50; % 蚂蚁数量 alpha = 1; % 信息素重要程度因子 beta = 5; % 启发函数重要程度因子 rho = 0.1; % 信息素挥发因子 Q = 1; % 常系数 Eta = 1./D; % 启发函数 Tau = ones(n,n); % 信息素矩阵 Table = zeros(m,n); % 路径记录表 iter = 1; % 迭代次数初值 iter_max = 200; % 最大迭代次数 Route_best = zeros(iter_max,n); % 各代最佳路径 Length_best = zeros(iter_max,1); % 各代最佳路径的长度 Length_ave = zeros(iter_max,1); % 各代路径的平均长度 %% 迭代寻找最佳路径 while iter <= iter_max % 随机产生各个蚂蚁的起点城市 start = zeros(m,1); for i = 1:m temp = randperm(n); start(i) = temp(1); end Table(:,1) = start; % 构建解空间 citys_index = 1:n; % 逐个蚂蚁路径选择 for i = 1:m % 逐个城市路径选择 for j = 2:n tabu = Table(i,1:(j - 1)); % 已访问的城市集合(禁忌表) allow_index = ~ismember(citys_index,tabu); allow = citys_index(allow_index); % 待访问的城市集合 P = allow; % 计算城市间转移概率 for k = 1:length(allow) P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta; end P = P/sum(P); % 轮盘赌法选择下一个访问城市 Pc = cumsum(P); target_index = find(Pc >= rand); target = allow(target_index(1)); Table(i,j) = target; end end % 计算各个蚂蚁的路径距离 Length = zeros(m,1); for i = 1:m Route = Table(i,:); for j = 1:(n - 1) Length(i) = Length(i) + D(Route(j),Route(j + 1)); end Length(i) = Length(i) + D(Route(n),Route(1)); end % 计算最短路径距离及平均距离 if iter == 1 [min_Length,min_index] = min(Length); Length_best(iter) = min_Length; Length_ave(iter) = mean(Length); Route_best(iter,:) = Table(min_index,:); else [min_Length,min_index] = min(Length); Length_best(iter) = min(Length_best(iter - 1),min_Length); Length_ave(iter) = mean(Length); if Length_best(iter) == min_Length Route_best(iter,:) = Table(min_index,:); else Route_best(iter,:) = Route_best((iter-1),:); end end % 更新信息素 Delta_Tau = zeros(n,n); % 逐个蚂蚁计算 for i = 1:m % 逐个城市计算 for j = 1:(n - 1) Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i); end Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i); end Tau = (1-rho) * Tau + Delta_Tau; % 迭代次数加1,清空路径记录表 iter = iter + 1; Table = zeros(m,n); end %% 结果显示 [Shortest_Length,index] = min(Length_best); Shortest_Route = Route_best(index,:); disp([‘最短距离:‘ num2str(Shortest_Length)]); disp([‘最短路径:‘ num2str([Shortest_Route Shortest_Route(1)])]); %% 绘图 figure(1) plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],... [citys(Shortest_Route,2);citys(Shortest_Route(1),2)],‘o-‘); grid on for i = 1:size(citys,1) text(citys(i,1),citys(i,2),[‘ ‘ num2str(i)]); end text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),‘ 起点‘); text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),‘ 终点‘); xlabel(‘城市位置横坐标‘) ylabel(‘城市位置纵坐标‘) title([‘蚁群算法优化路径(最短距离:‘ num2str(Shortest_Length) ‘)‘]) figure(2) plot(1:iter_max,Length_best,‘b‘,1:iter_max,Length_ave,‘r:‘) legend(‘最短距离‘,‘平均距离‘) xlabel(‘迭代次数‘) ylabel(‘距离‘) title(‘各代最短距离与平均距离对比‘)
蚁群算法优化路径:
各代最短距离与平均距离对比:
以上是关于智能算法:蚁群算法的主要内容,如果未能解决你的问题,请参考以下文章
优化求解基于matlab蚁群算法求解函数极值问题含Matlab源码 1201期