二叉排序树(BST)
Posted bingbug
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二叉排序树(BST)相关的知识,希望对你有一定的参考价值。
二叉排序树对于任何一个非叶子节点都要求比左子节点大,比右子节点下,相同可放入左子节点或右子节点
对于删除情况,直接删除叶子节点和删除只有一颗子树的情况都比较好处理,对于第3种情况删除2棵子树详细记录一下
找到要删除的节点的父节点和他右子树找到最小值,最小值记录在临时变量里,删除最小节点,替换
public class BinarySortTreeDemo { public static void main(String[] args) { int[] arr = {7, 3, 10, 12, 5, 1, 9, 0}; BinarySortTree binarySortTree = new BinarySortTree(); for (int i = 0; i < arr.length; i++) { binarySortTree.add(new Node(arr[i])); } binarySortTree.delete(2); binarySortTree.delete(5); binarySortTree.delete(9); binarySortTree.delete(12); binarySortTree.delete(1); binarySortTree.delete(10); binarySortTree.delete(0); binarySortTree.delete(3); binarySortTree.delete(7); binarySortTree.infixOrder(); } } class BinarySortTree { private Node root; public void add(Node node) { if (root == null) { root = node; } else { root.add(node); } } public void infixOrder() { if (root != null) { root.infixOrder(); } } public Node search(int value) { if (root == null) { return null; } else { return root.search(value); } } public Node searchParent(int value) { if (root == null) { return null; } else { return root.searchParent(value); } } public int delRightTreeMin(Node node) { Node target = node; while (target.right != null) { target = target.right; } delete(target.value); return target.value; } public void delete(int value) { if (root == null) { return; } else { Node targetNode = search(value); if (targetNode == null) { return; } if (root.left == null && root.right == null) { root = null; return; } Node parent = searchParent(value); if (targetNode.left == null && targetNode.right == null) { if (parent.left != null && parent.left == targetNode) { parent.left = null; } else if (parent.right != null && parent.right == targetNode) { parent.right = null; } } else if (targetNode.left != null && targetNode.right != null) { int minVal = delRightTreeMin(targetNode.left); targetNode.value = minVal; } else { if (targetNode.left != null) { if (parent != null) { if (parent.left.value == value) { parent.left = targetNode.left; } else { parent.right = targetNode.left; } } else { root = targetNode.left; } } else { if (parent != null) { if (parent.left.value == value) { parent.left = targetNode.right; } else { parent.right = targetNode.right; } } else { root = targetNode.right; } } } } } } class Node { int value; Node left; Node right; public Node(int value) { this.value = value; } @Override public String toString() { return "Node[" + "value=" + value + ‘]‘; } public void add(Node node) { if (node == null) { return; } if (node.value < this.value) { if (this.left == null) { this.left = node; } else { this.left.add(node); } } else { if (this.right == null) { this.right = node; } else { this.right.add(node); } } } public void infixOrder() { if (this.left != null) { this.left.infixOrder(); } System.out.println(this); if (this.right != null) { this.right.infixOrder(); } } public Node search(int value) { if (value == this.value) { return this; } else if (value < this.value) { if (this.left == null) { return null; } return this.left.search(value); } else { if (this.right == null) { return null; } return this.right.search(value); } } /** * @param value 要找的值 * @return 要删除节点的父节点 没有返回null */ public Node searchParent(int value) { if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) { return this; } else { if (value < this.value && this.left != null) { return this.left.searchParent(value); } else if (value >= this.value && this.left != null) { return this.right.searchParent(value); } else { return null; } } } }
以上是关于二叉排序树(BST)的主要内容,如果未能解决你的问题,请参考以下文章