机器学习(ML)四之文本预处理
Posted jaww
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习(ML)四之文本预处理相关的知识,希望对你有一定的参考价值。
文本预处理
- 读入文本
- 分词
- 建立字典,将每个词映射到一个唯一的索引(index)
- 将文本从词的序列转换为索引的序列,方便输入模型
读入文本
import collections import re def read_time_machine(): with open(‘/home/kesci/input/timemachine7163/timemachine.txt‘, ‘r‘) as f: lines = [re.sub(‘[^a-z]+‘, ‘ ‘, line.strip().lower()) for line in f] return lines lines = read_time_machine() print(‘# sentences %d‘ % len(lines))
分词
我们对每个句子进行分词,也就是将一个句子划分成若干个词(token),转换为一个词的序列。
def tokenize(sentences, token=‘word‘): """Split sentences into word or char tokens""" if token == ‘word‘: return [sentence.split(‘ ‘) for sentence in sentences] elif token == ‘char‘: return [list(sentence) for sentence in sentences] else: print(‘ERROR: unkown token type ‘+token) tokens = tokenize(lines) tokens[0:2]
建立字典
将字符串转换为数字。因此需要先构建一个字典(vocabulary),将每个词映射到一个唯一的索引编号。
1、unk在特殊词处理是必须要做的;
2、统计词频
3、词对照到索引编号
def __init__(self, tokens, min_freq=0, use_special_tokens=False): counter = count_corpus(tokens) # : self.token_freqs = list(counter.items()) self.idx_to_token = [] if use_special_tokens: # padding, begin of sentence, end of sentence, unknown self.pad, self.bos, self.eos, self.unk = (0, 1, 2, 3) self.idx_to_token += [‘‘, ‘‘, ‘‘, ‘‘] else: self.unk = 0 self.idx_to_token += [‘‘] self.idx_to_token += [token for token, freq in self.token_freqs if freq >= min_freq and token not in self.idx_to_token] self.token_to_idx = dict() for idx, token in enumerate(self.idx_to_token): self.token_to_idx[token] = idx def __len__(self): return len(self.idx_to_token) def __getitem__(self, tokens): if not isinstance(tokens, (list, tuple)): return self.token_to_idx.get(tokens, self.unk) return [self.__getitem__(token) for token in tokens] def to_tokens(self, indices): if not isinstance(indices, (list, tuple)): return self.idx_to_token[indices] return [self.idx_to_token[index] for index in indices] def count_corpus(sentences): tokens = [tk for st in sentences for tk in st] return collections.Counter(tokens) # 返回一个字典,记录每个词的出现次数
用现有工具进行分词
我们前面介绍的分词方式非常简单,它至少有以下几个缺点:
- 标点符号通常可以提供语义信息,但是我们的方法直接将其丢弃了
- 类似“shouldn‘t", "doesn‘t"这样的词会被错误地处理
- 类似"Mr.", "Dr."这样的词会被错误地处理
通过引入更复杂的规则来解决这些问题,但是事实上,有一些现有的工具可以很好地进行分词,我们在这里简单介绍其中的两个:spaCy和NLTK。
text = "Mr. Chen doesn‘t agree with my suggestion."
spaCy
import spacy nlp = spacy.load(‘en_core_web_sm‘) doc = nlp(text) print([token.text for token in doc])
[‘Mr.‘, ‘Chen‘, ‘does‘, "n‘t", ‘agree‘, ‘with‘, ‘my‘, ‘suggestion‘, ‘.‘]
NLTK
from nltk.tokenize import word_tokenize from nltk import data data.path.append(‘/home/test/input/nltk_data/nltk_data‘) print(word_tokenize(text))
[‘Mr.‘, ‘Chen‘, ‘does‘, "n‘t", ‘agree‘, ‘with‘, ‘my‘, ‘suggestion‘, ‘.‘]
以上是关于机器学习(ML)四之文本预处理的主要内容,如果未能解决你的问题,请参考以下文章