PP: Soft-DTW: a differentiable loss function for time-series

Posted dulun

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PP: Soft-DTW: a differentiable loss function for time-series相关的知识,希望对你有一定的参考价值。

Problem: new loss

Label: new loss; 

Abstract:

A differentiable learning loss; 

Introduction:

supervised learning: learn a mapping that links an input to an output object. 

output object is a time series.  

Prediction: two multi-layer perceptrons, the first use Euclidean loss and the second use soft-DTW as a loss function. --------> soft-DTW, better sharp changes. 

DTW computes the best possible alignment between two time series.

 

以上是关于PP: Soft-DTW: a differentiable loss function for time-series的主要内容,如果未能解决你的问题,请参考以下文章

Python集合-difference()方法

Difference between link and @import

Difference between Netbios and Host name

lintcode-medium-The Smallest Difference

leetcode?pythonFind the Difference

The difference of Methods and Functions