基于BERT的多模型融合借鉴

Posted demo-deng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于BERT的多模型融合借鉴相关的知识,希望对你有一定的参考价值。

本次介绍假新闻赛道一第一名的构建思路,大家一起学习下

任务描述

 

文本是新闻信息的主要载体,对新闻文本的研究有助于虚假新闻的有效识别。虚假新闻文本检测,具体任务为:给定一个新闻事件的文本,判定该事件属于真实新闻还是虚假新闻。该任务可抽象为NLP领域的文本分类任务,根据新闻文本内容,判定该新闻是真新闻还是假新闻。针对该任务,本文采用BERT-Finetune、BERT-CNN-Pooling、BERT-RCN-Pooling的多种结构进行融合,在输入上引入字词结合的形式,另外充分利用假新闻的关键词特征进行优化。在智源&计算所-互联网虚假新闻检测挑战赛的假新闻文本识别这个评测任务上,该文提出的方法在最终的评测数据上达到F1为 0.92664的成绩。

模型介绍

模型结构

本文采用了多种模型,下以BERT-CNN-Pooling模型为例介绍,见下图。

该模型采用BERT模型提取出字向量(不Finetune),然后结合腾讯词向量,作为最终的词向量输入到1维卷积网络中。在池化过程中同时选择最大池化和平均池化,最后将其结果相加,接入一个Dense层中得到结果。

除了此模型外,本文还是用了BERT-Finetune、BERT-RCN-Pooling模型。

技术图片

模型参数和融合细节

BERT模型可采用roeberta_zh_L-24_H-1024_A-16,其优点为准确率高,缺点为显存占用率较高。以BERT-Finetune为例,在训练工程中,batch_size选择为4,maxLen选择为164,epoch数选择为3,learning_rate为前两个epoch为1e-5,后一个为1e-6。

本文选择了10折交叉验证,每折中选择召回率较高的模型(一般为第二个epoch或第三个epoch训练出的模型)。另外,由于数据假新闻识别正确率较高,其召回率较低,因此在这10个模型进行融合时,可以将10个模型的直接结果相加,当其大于3认为是假新闻,小于3即为真新闻。

同理,在BERT-CNN-Pooling、BERT-RCN-Pooling模型中也采取以上的融合策略,在BERT-Finetune、BERT-CNN-Pooling、BERT-RCN-Pooling这3个模型间采用该策略(值改为1)。

在模型融合时发现,假新闻喜欢对部分人、地、名词、动词进行造谣。这些词的获取可通过对所有的假新闻和test集合,利用textrank4zh进行关键词获取,最后经过人工筛选,加入到模型融合的评判中,具体为当新闻的关键词含有这些词时,就有假新闻的倾向,此时评判值可以降低,利用这个关键词特征可以发现更多的假新闻,使得假新闻评判效果更好。

实验结果与分析

实验结果见下表,其中评判值即为判断真假新闻的临界值,BERT-RCN-Pooling、BERT-CNN-Pooling的实验结果基本与BERT_Finetune类似。

由表一可知:单模型在真假新闻判定的结果并不是很好,而将单模型进行10折交叉验证后准确率提升很大,说明10折交叉验证还是很有必要的。另外,融合BERT_Finetune+BERT-RCN-Pooling+BERT-CNN-Pooling这三个模型并加上关键词特征也会有不小的提升。

本文使用模型都较为基础,基本是通过交叉验证和模型融合提升测试集得分。在多模型融合上,测试了多种模型,最后处于效果和速度的考虑选择了这三种。

技术图片

结论

本文介绍了小组参加智源&计算所-互联网虚假新闻检测挑战赛假新闻文本识别评测的基本情况。本文采用BERT-Finetune、BERT-CNN-Pooling、BERT-RCN-Pooling的多种结构进行融合,在每一模型基础上进行10折交叉验证,然后利用假新闻的关键词特征进行优化,最终达到了不错的性能。

 

代码精华

字词向量结合

def remake(x,num):
    L = []
    for i,each in enumerate(num):
        L += [x[i]]*each
    return L
words = [t for t in jieba.cut(text)]
temp = [len(t) for t in words]
x3 = [word2id[t] if t in vocabulary else 1 for t in words]
x3 = remake(x3, temp)
if len(x3) < maxlen - 2:
    x3 = [1] + x3 + [1] + [0] * (maxlen - len(x3) - 2)
else:
    x3 = [1] + x3[:maxlen - 2] + [1]

主要思路是把词向量映射到每个字上,如:中国,中国的词向量为a,那么体现在字上即为[a , a],若中国的字向量为[b , c], 相加后即为[a+b, a+c]。此处x3即为对称好的词向量,直接输入到Embedding层即可。

支持mask的最大池化

 
class MaskedGlobalMaxPool1D(keras.layers.Layer):
    def __init__(self, **kwargs):
        super(MaskedGlobalMaxPool1D, self).__init__(**kwargs)
        self.supports_masking = True

    def compute_mask(self, inputs, mask=None):
        return None

    def compute_output_shape(self, input_shape):
        return input_shape[:-2] + (input_shape[-1],)

    def call(self, inputs, mask=None):
        if mask is not None:
            mask = K.cast(mask, K.floatx())
            inputs -= K.expand_dims((1.0 - mask) * 1e6, axis=-1)
        return K.max(inputs, axis=-2)

 

支持mask的平均池化

class MaskedGlobalAveragePooling1D(keras.layers.Layer):

    def __init__(self, **kwargs):
        super(MaskedGlobalAveragePooling1D, self).__init__(**kwargs)
        self.supports_masking = True

    def compute_mask(self, inputs, mask=None):
        return None

    def compute_output_shape(self, input_shape):
        return input_shape[:-2] + (input_shape[-1],)
        
    def call(self, x, mask=None):
        if mask is not None:
            mask = K.repeat(mask, x.shape[-1])
            mask = tf.transpose(mask, [0, 2, 1])
            mask = K.cast(mask, K.floatx())
            x = x * mask
            return K.sum(x, axis=1) / K.sum(mask, axis=1)
        else:
            return K.mean(x, axis=1)

 

Bert Finetune

x1_in = Input(shape=(None,))
x2_in = Input(shape=(None,))
bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path)
for l in bert_model.layers:
    l.trainable = True
x = bert_model([x1_in, x2_in])
x = Lambda(lambda x: x[:, 0])(x)
x = Dropout(0.1)(x)
p = Dense(1, activation=sigmoid)(x)
model = Model([x1_in, x2_in], p)
model.compile(
        loss=binary_crossentropy,
        optimizer=Adam(1e-5), 
        metrics=[accuracy]
    )

 

BERT+TextCNN

x1_in = Input(shape=(None,))
x2_in = Input(shape=(None,))
x3_in = Input(shape=(None,))
x1, x2,x3 = x1_in, x2_in,x3_in
x_mask = Lambda(lambda x: K.cast(K.greater(K.expand_dims(x, 2), 0), float32))(x1)
bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path)
embedding1= Embedding(len(vocabulary) + 2, 200,weights=[embedding_index],mask_zero= True)
x3 = embedding1(x3)
embed_layer = bert_model([x1_in, x2_in])
embed_layer  = Concatenate()([embed_layer,x3])
x = MaskedConv1D(filters=256, kernel_size=3, padding=same, activation=relu)(embed_layer )
pool = MaskedGlobalMaxPool1D()(x)
ave = MaskedGlobalAveragePooling1D()(x)
x = Add()([pool,ave])
x = Dropout(0.1)(x)
x = Dense(32, activation = relu)(x)
p = Dense(1, activation=sigmoid)(x)
model = Model([x1_in, x2_in,x3_in], p)
model.compile(
    loss=binary_crossentropy,
    optimizer=Adam(1e-3),
    metrics=[accuracy]
)

BERT + RNN + CNN

x1_in = Input(shape=(None,))
x2_in = Input(shape=(None,))
x3_in = Input(shape=(None,))
x1, x2,x3 = x1_in, x2_in,x3_in
x_mask = Lambda(lambda x: K.cast(K.greater(K.expand_dims(x, 2), 0), float32))(x1)
bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path)
embedding1= Embedding(len(vocabulary) + 2, 200,weights=[embedding_index],mask_zero= True)
x3 = embedding1(x3)
embed_layer = bert_model([x1_in, x2_in])
embed_layer  = Concatenate()([embed_layer,x3])
embed_layer = Bidirectional(LSTM(units=128,return_sequences=True))(embed_layer)
embed_layer = Bidirectional(LSTM(units=128,return_sequences=True))(embed_layer)
x = MaskedConv1D(filters=256, kernel_size=3, padding=same, activation=relu)(embed_layer )
pool = MaskedGlobalMaxPool1D()(x)
ave = MaskedGlobalAveragePooling1D()(x)
x = Add()([pool,ave])
x = Dropout(0.1)(x)
x = Dense(32, activation = relu)(x)
p = Dense(1, activation=sigmoid)(x)
model = Model([x1_in, x2_in,x3_in], p)
model.compile(
    loss=binary_crossentropy,
    optimizer=Adam(1e-3),
    metrics=[accuracy]
)

10折交叉训练

for train,test in kfold.split(train_data_X,train_data_Y):
    model = getModel()
    t1,t2,t3,t4 = np.array(train_data_X)[train], np.array(train_data_X)[test],np.array(train_data_Y)[train],np.array(train_data_Y)[test]
    train_D = data_generator(t1.tolist(), t3.tolist())
    dev_D = data_generator(t2.tolist(), t4.tolist())
    evaluator = Evaluate()
    model.fit_generator(train_D.__iter__(),
                        steps_per_epoch=len(train_D),
                        epochs=3,
                        callbacks=[evaluator,lrate]
                        )
    del model
    K.clear_session()

关键词特征

def extract(L):
    return  [r.word for r in L]
    
tr4w = TextRank4Keyword()
result = []
for sentence in train:
    tr4w.analyze(text=text, lower=True, window=2)
    s =  extract(tr4w.get_keywords(10, word_min_len=1))
    result = result + s

c = Counter(result)
print(c.most_common(100))

找到词后从其中人工遴选,选出每类的词,另外,在test集合中也运行该代码,同时用jieba辅助分割词的类。

以上是关于基于BERT的多模型融合借鉴的主要内容,如果未能解决你的问题,请参考以下文章

CMDM:基于异构序列融合的多兴趣深度召回模型在内容平台的探索和实践

2021年CCF 基于BERT的大模型容量挑战赛 第一名方案分享

xlnet+bilstm实现菜品正负评价分类

2021 第五届“达观杯” 基于大规模预训练模型的风险事件标签识别3 Bert和Nezha方案

2021 第五届“达观杯” 基于大规模预训练模型的风险事件标签识别3 Bert和Nezha方案

【论文笔记】融合标签向量到BERT:对文本分类进行改进