PAT Advanced 1053 Path of Equal Weight (30) [树的遍历]

Posted houzm

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PAT Advanced 1053 Path of Equal Weight (30) [树的遍历]相关的知识,希望对你有一定的参考价值。

题目

Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L. Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let’s consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 diferent paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:
ID K ID[1] ID[2] … ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID’s of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1, A2, …, An} is said to be greater than sequence {B1, B2, …, Bm} if there exists 1 <= k < min{n, m} such that Ai = Bi for i=1, … k, and Ak+1 > Bk+1.
Sample Input:
20 9 24
10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
00 4 01 02 03 04
02 1 05
04 2 06 07
03 3 11 12 13
06 1 09
07 2 08 10
16 1 15
13 3 14 16 17
17 2 18 19
Sample Output:
10 5 2 7
10 4 10
10 3 3 6 2
10 3 3 6 2

题目分析

已知非叶子节点的所有子节点,已知每个节点的权重,已知一个权重和S,求权重和等于S的路径(该路径必须是从root到叶子节点)
注:多个满足条件的路径,必须非升序打印,序列A>序列B的条件为:A1~Ai与B1~Bi相等,但是Ai+1>Bi+1

解题思路

  1. 定义节点结构体(权重:w,子节点cds),int path[n]记录从root到当前节点路径
  2. 题目要求权重非增序输出,每个节点的所有节点信息输入完成后,对所有子节点进行排序(权重由大到小,权重最大的节点排在最左边),深度优先遍历时会从最左边路径开始,可保证最后输出的路径满足非升序条件
  3. dfs深度优先遍历树,参数numNode记录当前path中元素的个数,参数sum记录从root到当前节点的权重和
    3.1 若权重和>s,退出不再处理该路径
    3.2 若权重和==s
    3.2.1 若当前节点是叶子节点,打印路径
    3.2.2 若当前节点是非叶子节点,退出不再处理该路径

Code

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn=101;
int s,path[maxn];
struct node {
    int w;
    vector<int> cds;
} nds[maxn];
bool cmp(int a,int b) {
    return nds[a].w>nds[b].w;
}
// index当前处理节点在nds中的下标,numNode当前path数组中元素个数,sum从root到当前节点权重和 
void dfs(int index, int numNode, int sum) {
    if(sum>s)return; //权重和超过s
    if(sum==s) {
        if(nds[index].cds.size()!=0)return; //权重和为s,但不是叶子节点
        //满足条件,权重和为s,且为叶子节点
        for(int i=0; i<numNode; i++) {
            if(i!=0)printf(" ");
            printf("%d",nds[path[i]].w);
            if(i==numNode-1)printf("
");
        }
        return;
    }
    for(int i=0; i<nds[index].cds.size(); i++) {
        int cdi = nds[index].cds[i]; //子节点在nds中的下标
        path[numNode] = cdi;
        dfs(cdi, numNode+1, sum+nds[cdi].w);
    }
}
int main(int argc,char * argv[]) {
    int n,m,cn,id,cid;
    scanf("%d %d %d",&n,&m,&s);
    for(int i=0; i<n; i++) {
        scanf("%d",&nds[i].w);
    }
    for(int i=0; i<m; i++) {
        scanf("%d %d",&id,&cn);
        for(int j=0; j<cn; j++) {
            scanf("%d",&cid);
            nds[id].cds.push_back(cid);
        }
        sort(nds[id].cds.begin(),nds[id].cds.end(),cmp);
    }
    path[0]=0;
    dfs(0,1,nds[0].w);
    return 0;
}


以上是关于PAT Advanced 1053 Path of Equal Weight (30) [树的遍历]的主要内容,如果未能解决你的问题,请参考以下文章

PAT (Advanced Level) 1053. Path of Equal Weight (30)

PAT 1053. Path of Equal Weight

PAT 1053 Path of Equal Weight (30)

PAT 1053. Path of Equal Weight (30)

pat 1053 Path of Equal Weight

PAT1053 Path of Equal Weight(30 分)