tensorflow计算图

Posted fanhaha

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tensorflow计算图相关的知识,希望对你有一定的参考价值。

tensorflow计算图

      计算图是对有向图的表示,主要包含点和边;tensorflow使用计算图计算,计算图的点对应于ops,variables,constant,placeholder等,边对应于Tensors。因此tensorflow主要包含两个部分:构建计算图和runtime运行计算图。

 为什么要用计算图?

  1. 并行化,因为计算图是对计算的一种抽象,点之间的关系取决其依赖关系。因此,互相不依赖的计算可以并行计算,在多集群环境下可以进行分布式计算。
  2. 可移植性性,因为图是一种语言无关的表示方式,tensorflow 中使用protobuf来存储图,可以使用C++,python,jave等语言来解析图。 

总结一下,tensorflow 中要进行计算主要进行两个步骤: 1. 构建graph; 2. session evaluate tensor

假如要实现一个类似tensorflow框架,需要如何操作?

  • node 节点的实现:
class Node():
    def __init__(self, input_nodes):
        self.input_nodes=input_nodes
        self.output=Node
    
    def forward(self):
        pass
    def backward(self):
        pass
技术图片

 

class add(Node):
    def forward(self, a,b):
        return a+b
    def backward(self,upstream_grad):
        NotImpl

class multiple(Node):
    def forward(self, a,b):
        return a*b
    def backward(self,upstream_grad):
        NotImpl
技术图片

 

  • graph 实现
class Graph():
    def __init__(self):
        self.nodes = []
    def as_default(self):
        global _default_graph

    def add_node(self,node):
        _default_graph.append(node)
技术图片
  • session 实现
# session 接受要run的operation,要得到输出要拓扑排序所有的node,在session run的时候,按正确顺序执行。 可以表示为DAG(directed acyclic graph) 
#  将要执行的node作为unvisited node加入栈中,利用深度优先搜索的方式递归遍历所有的node,当node没有其他输入时,将node标记为visited出栈。出栈的顺序就是拓扑排序。 

class Session():
    def run(self, node, feed_dict={}):
        nodes_sorted=topology_sort(node)
        for node in nodes_sorted:
            if type(node)==Placeholder:
                node.output=feed_dict[node]
            elif type(node)==Variable or type(node)==Constant:
                node.output=node.value
            else:
                inputs=[node.output for node in node.input_nodes]
                node.output=node.forward(*inputs)
        return node.output          
技术图片

 

完整的code:

import numpy as np

class Graph():
  def __init__(self):
    self.operations = []
    self.placeholders = []
    self.variables = []
    self.constants = []

  def as_default(self):
    global _default_graph
    _default_graph = self

class Operation():
  def __init__(self, input_nodes=None):
    self.input_nodes = input_nodes
    self.output = None
    
    # Append operation to the list of operations of the default graph
    _default_graph.operations.append(self)

  def forward(self):
    pass

  def backward(self):
    pass

class BinaryOperation(Operation):
  def __init__(self, a, b):
    super().__init__([a, b])

class add(BinaryOperation):
  """
  Computes a + b element-wise
  """
  def forward(self, a, b):
    return a + b

  def backward(self, upstream_grad):
    raise NotImplementedError

class multiply(BinaryOperation):
  """
  Computes a * b, element-wise
  """
  def forward(self, a, b):
    return a * b

  def backward(self, upstream_grad):
    raise NotImplementedError

class divide(BinaryOperation):
  """
  Returns the true division of the inputs, element-wise
  """
  def forward(self, a, b):
    return np.true_divide(a, b)

  def backward(self, upstream_grad):
    raise NotImplementedError

class matmul(BinaryOperation):
  """
  Multiplies matrix a by matrix b, producing a * b
  """
  def forward(self, a, b):
    return a.dot(b)

  def backward(self, upstream_grad):
    raise NotImplementedError

class Placeholder():
  def __init__(self):
    self.value = None
    _default_graph.placeholders.append(self)

class Constant():
  def __init__(self, value=None):
    self.__value = value
    _default_graph.constants.append(self)

  @property
  def value(self):
    return self.__value

  @value.setter
  def value(self, value):
    raise ValueError("Cannot reassign value.")

class Variable():
  def __init__(self, initial_value=None):
    self.value = initial_value
    _default_graph.variables.append(self)

def topology_sort(operation):
    ordering = []
    visited_nodes = set()

    def recursive_helper(node):
      if isinstance(node, Operation):
        for input_node in node.input_nodes:
          if input_node not in visited_nodes:
            recursive_helper(input_node)

      visited_nodes.add(node)
      ordering.append(node)

    # start recursive depth-first search
    recursive_helper(operation)

    return ordering

class Session():
  def run(self, operation, feed_dict={}):
    nodes_sorted = topology_sort(operation)

    for node in nodes_sorted:
      if type(node) == Placeholder:
        node.output = feed_dict[node]
      elif type(node) == Variable or type(node) == Constant:
        node.output = node.value
      else:
        inputs = [node.output for node in node.input_nodes]
        node.output = node.forward(*inputs)

    return operation.output






import tf_api as tf

# create default graph
tf.Graph().as_default()

# construct computational graph by creating some nodes
a = tf.Constant(15)
b = tf.Constant(5)
prod = tf.multiply(a, b)
sum = tf.add(a, b)
res = tf.divide(prod, sum)

# create a session object
session = tf.Session()

# run computational graph to compute the output for ‘res‘
out = session.run(res)
print(out)

技术图片

以上是关于tensorflow计算图的主要内容,如果未能解决你的问题,请参考以下文章

TensorFlow_Fold计算图连接初探 Diamond计算图调试历程

机器学习之TensorFlow介绍

tensorflow计算图

TensorFlow计算模型—计算图

tensorflow中卷积层输出特征尺寸计算和padding参数解析

《30天吃掉那只 TensorFlow2.0》 2-2 三种计算图