[luogu p1118] [USACO06FEB]数字三角形

Posted crab-in-the-northeast

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[luogu p1118] [USACO06FEB]数字三角形相关的知识,希望对你有一定的参考价值。

题面

题目描述

FJ and his cows enjoy playing a mental game. They write down the numbers from (1) to$ N(1 le N le 10)$ in a certain order and then sum adjacent numbers to produce a new list with one fewer number. They repeat this until only a single number is left. For example, one instance of the game (when (N=4)) might go like this: 3 1 2 4 4 3 6 7 9 16 Behind FJ‘s back, the cows have started playing a more difficult game, in which they try to determine the starting sequence from only the final total and the number (N). Unfortunately, the game is a bit above FJ‘s mental arithmetic capabilities. Write a program to help FJ play the game and keep up with the cows.

有这么一个游戏: 写出一个(1)(N)的排列(a_i),然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少(1),直到只剩下一个数字位置。下面是一个例子: (3,1,2,4) (4,3,6) (7,9) (16) 最后得到(16)这样一个数字。 现在想要倒着玩这样一个游戏,如果知道(N),知道最后得到的数字的大小(sum),请你求出最初序列(a_i),为(1)(N)的一个排列。若答案有多种可能,则输出字典序最小的那一个。

管理员注:本题描述有误,这里字典序指的是(1,2,3,4,5,6,7,8,9,10,11,12) 而不是(1,10,11,12,2,3,4,5,6,7,8,9)

输入输出格式

输入格式

两个正整数(n,sum)

输出格式

输出包括(1)行,为字典序最小的那个答案。 当无解的时候,请什么也不输出。(好奇葩啊)

输入输出样例

输入样例 #1

4 16

输出样例 #1

3 1 2 4

说明

对于(40\%)的数据,(n≤7)
对于(80\%)的数据,(n≤10)
对于(100\%)的数据,(n≤12,sum≤12345)

分析

这道题明显是搜索,但无脑枚举next_permutation时间复杂度爆炸,所以我们不妨推推式子找规律。
如果三角形有(n)层,第一行的数分别为(a_1,a_2,ldots,a_n),我们能推出(sum)值吗?
如果(n = 1),那么答案显然为(a_1)
如果(n = 2),答案就是上一层两者之和,自然为(a_1+a_2)
如果(n = 3),画出三角:
[ a_1qquad quad a_2qquad quad a_3 a_1+a_2 quad a_2+a_3 a_1+2a_2+a_3 ]
答案为(a_1+2a_2+a_3)
如果(n = 4)
[ a_1qquad qquad a_2qquad qquad a_3 qquadqquad a_4a_1+a_2 qquad a_2+a_3 qquad a_3+a_4a_1+2a_2+a_3 quad a_2+2a_3+a_4a_1+3a_2+3a_3+a_4 ]
答案为(a_1+3a_2+3a_3+a_4)
如果(n = 5)
[ a_1qquad qquad quad a_2qquad qquad quad a_3 qquadqquad quad a_4 qquadqquad a_5a_1+a_2 qquad quad a_2+a_3 qquad quad a_3+a_4 qquad quad a_4+a_5a_1+2a_2+a_3 quad a_2+2a_3+a_4 quad a_3+2a_4+a_5a_1+3a_2+3a_3+a_4 quad a_2+3a_3+3a_4+a_5a_1+4a_2+6a_3+4a_4+a_5 ]
答案为(a_1+4a_2+6a_3+4a_4+a_5)
列个表:

(n) (sum)
(1) (a_1)
(2) (a_1+a_2)
(3) (a_1+2a_2+a_3)
(4) (a_1+3a_2+3a_3+a_4)
(5) (a_1+4a_2+6a_3+4a_4+a_5)
(6) (a_1+5a_2+10a_3+10a_4+5a_5+a_6)
(ldots) (dots)

如果我们抛掉字母不看,只剩下系数,会得到什么结果?

(n) ( ext{coefficient})
(1) (1)
(2) (1,1)
(3) (1,2,1)
(4) (1,3,3,1)
(5) (1,4,6,4,1)
(6) (1,5,10,10,5,1)
(ldots) (dots)

聪明的你一定看出来了,这就是杨辉三角。
而题目呢恰好是已知(sum),求原式子,而(n)(sum)和原数组就被杨辉三角紧紧绑在一起。我们只需要通过搜索枚举出当前数字乘上杨辉三角的对应数字,然后相加看看是否等于(sum),如果等于输出,结束。
杨辉三角这里我们可以用一个公式预处理:
[ C^0_n = 1C^k_n = frac{n+1-k}{k} C^{k-1}_n ]

代码

#include <iostream>
#include <cstdio>

const int maxn = 25;
int n,sum;
bool vis[maxn];
int ans[maxn];
int c[maxn];

bool dfs(int nownum, int nowsum, int step) {
    if (nowsum > sum) return false;//可行性剪枝
    if (step == n) {
        if(nowsum == sum) {
            ans[n] = nownum;
            return true;
        }
        return false;//同样是可行性剪枝,但评测的时候我没写这句也AC了umm
    }

    vis[nownum] = true;
    for (int j = 1; j <= n; j++) {
        if (vis[j]) continue;
        if(dfs(j,nowsum+c[step]*j,step+1)) {
            ans[step] = nownum;
            return true;
        }
    }

    vis[nownum] = false;//回溯
    return false;
}

void pastri() {
    c[0] = c[n-1] = 1;
    if (n == 1) return ; 
    for (int i = 1; i * 2 < n; i++)
        c[i] = c[n-i-1] = (n-i) * c[i-1] / i;
}//用组合数预处理杨辉三角。

int main() {
    scanf("%d%d",&n,&sum);
    pastri();

    if (dfs(0,0,0)) 
        for (int i = 1; i <= n; i++)
            printf("%d ",ans[i]);

    puts("");
    return 0;
}

评测记录

AC 100:R30917956

over.

以上是关于[luogu p1118] [USACO06FEB]数字三角形的主要内容,如果未能解决你的问题,请参考以下文章

洛谷P1118 [USACO06FEB]数字三角形 搜索

P1118 [USACO06FEB]数字三角形`Backward Digit Su`…

洛谷 P1118[USACO06FEB]数字三角形Backward Digit Sums

P1118 [USACO06FEB]Backward Digit Sums G/S

P1118 [USACO06FEB]数字三角形`Backward Digit Su`…

做题记录: P1118 [USACO06FEB]数字三角形Backward Digit Su…