模板最小圆覆盖——bzoj1336
Posted zsben991126
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了模板最小圆覆盖——bzoj1336相关的知识,希望对你有一定的参考价值。
博客链接
https://blog.csdn.net/commonc/article/details/52291822
#include<bits/stdc++.h> using namespace std; #define N 100005 typedef double db; const db eps=1e-10; const db pi=acos(-1); int sign(db k){ if (k>eps) return 1; else if (k<-eps) return -1; return 0; } int cmp(db k1,db k2){return sign(k1-k2);} int inmid(db k1,db k2,db k3){return sign(k1-k3)*sign(k2-k3)<=0;}// k3 在 [k1,k2] 内 struct point{ db x,y; point operator + (const point &k1) const{return (point){k1.x+x,k1.y+y};} point operator - (const point &k1) const{return (point){x-k1.x,y-k1.y};} point operator * (db k1) const{return (point){x*k1,y*k1};} point operator / (db k1) const{return (point){x/k1,y/k1};} int operator == (const point &k1) const{return cmp(x,k1.x)==0&&cmp(y,k1.y)==0;} // 逆时针旋转 point turn(db k1){return (point){x*cos(k1)-y*sin(k1),x*sin(k1)+y*cos(k1)};} point turn90(){return (point){-y,x};} bool operator < (const point k1) const{ int a=cmp(x,k1.x); if (a==-1) return 1; else if (a==1) return 0; else return cmp(y,k1.y)==-1; } db abs(){return sqrt(x*x+y*y);} db abs2(){return x*x+y*y;} db dis(point k1){return ((*this)-k1).abs();} point unit(){db w=abs(); return (point){x/w,y/w};} void scan(){double k1,k2; scanf("%lf%lf",&k1,&k2); x=k1; y=k2;} void print(){printf("%.11lf %.11lf ",x,y);} db getw(){return atan2(y,x);} point getdel(){if (sign(x)==-1||(sign(x)==0&&sign(y)==-1)) return (*this)*(-1); else return (*this);} int getP() const{return sign(y)==1||(sign(y)==0&&sign(x)>=0);} }; int inmid(point k1,point k2,point k3){return inmid(k1.x,k2.x,k3.x)&&inmid(k1.y,k2.y,k3.y);} db cross(point k1,point k2){return k1.x*k2.y-k1.y*k2.x;} db dot(point k1,point k2){return k1.x*k2.x+k1.y*k2.y;} struct circle{ point o; db r; void scan(){o.scan(); scanf("%lf",&r);} int inside(point k){//-1:圆外,0边上,1:圆内 return cmp(r,o.dis(k)); } }; int n; point p[N]; circle now; circle getcircle(point k1,point k2,point k3){//通过三点求元 db a1=k2.x-k1.x,b1=k2.y-k1.y,c1=(a1*a1+b1*b1)/2; db a2=k3.x-k1.x,b2=k3.y-k1.y,c2=(a2*a2+b2*b2)/2; db d=a1*b2-a2*b1; point o=(point){k1.x+(c1*b2-c2*b1)/d,k1.y+(a1*c2-a2*c1)/d}; return (circle){o,k1.dis(o)}; } int main(){ cin>>n; for(int i=1;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y); random_shuffle(p+1,p+1+n); now.r=0; now.o=p[1]; for(int i=2;i<=n;i++)if(now.inside(p[i])<0){//把点p[i]固定在新圆边上 now.o=p[i];now.r=0; for(int j=1;j<i;j++)if(now.inside(p[j])<0){//把点p[j]固定在新圆边上 now.o=(p[i]+p[j])*0.5; now.r=now.o.dis(p[i]); for(int k=1;k<j;k++)if(now.inside(p[k])<0){//三点求圆 now=getcircle(p[i],p[j],p[k]); } } } printf("%.10lf %.10lf %.10lf ",now.r,now.o.x,now.o.y); }
以上是关于模板最小圆覆盖——bzoj1336的主要内容,如果未能解决你的问题,请参考以下文章
[bzoj1336] [Balkan2002]Alien最小圆覆盖
bzoj1336/1337/2823[Balkan2002]Alien最小圆覆盖 随机增量法
bzoj2823: [AHOI2012]信号塔&&1336: [Balkan2002]Alien最小圆覆盖&&1337: 最小圆覆盖